设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 论  坛 博  客 视  频 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
     
  有哲的博客
  理解自然界
网络日志正文
物理趣味题解答:斜面滑块组问题 2016-03-09 19:59:36

《物理趣味题解答:斜面滑块组问题》

372



本文是对下题的解答。


题目:


斜面滑块组问题(重贴

送交者: zhf 2016030611:12:01 [灵机一动]

 http://bbs.creaders.net


 

在如下的图中,B是质量为m的滑块,A是质量为M的斜面。

A, B之间没有摩擦力,A与地面之间没有摩擦力。t = 0时,AB都静止。之后,B开始下滑。求A相对地面的加速度a







以下是我对上题的解答:

————————————————




斜面与地面的夹角θ

采用与斜面块A”同行的非惯性A参考系

其加速度a向右,用加速度与惯性力等效原理


“A参考系中:

1A处于静止。滑块B向左下方沿斜面滑行,与地面的夹角等于θ

2)而斜面块A和滑块B,各附加惯性力” Ma ma向左。



受力分析(图不包括结果力):


a矢量a的绝对值

正压力N ,一个作用于A.  一个作用于B.  垂直于斜面,大小相等,方向相反。


A图:

N*sinθ=Ma            (1)


B图:


N=mg*cosθ- ma*sinθ               (2)



2)代入(1):

(mg*cosθ- ma*sinθ)*sinθ= Ma


mg*cosθsinθ− ma*(sinθ)^2= Ma


mg*cosθsinθ= a(m*(sinθ)^2+ M)


a= mg*cosθsinθ / (m*(sinθ)^2+ M)   ,向右。(答案)




——————————————————



其他点击:


· 芭蕾舞天鹅湖 四个小天鹅


 ·看这N个以前的春晚歌舞,不会失望


 ·陈逸飞 77年油画全国美展 及女子


·为什么投资ETF”要小心?


 ·论橄榄油与糖尿病


·天鹅湖:王子生日派对之三人舞


·著名女声二重唱:轻柔的西风吹拂






浏览(789) (0) 评论(20)
发表评论
文章评论
作者:仙遊野人 留言时间:2016-03-12 18:51:40
即将在那个题下回答。
回复 | 0
作者:有哲 留言时间:2016-03-12 10:12:40
仙遊野人博,《趣味物理题:帆船逆风前进》评论中,我有一附加问:求“最佳角度”,没有被解答,你如感兴趣,可做。谢谢来访。
回复 | 0
作者:仙遊野人 留言时间:2016-03-12 08:08:12
我没有数学公式的软件,写起来难免粗糙,知道那有下载?
自从接触练功,禅修以来,解题与记忆有大幅度回升.甚至记忆起三十年前的难题并解答出, 无论高考还是考研.这都是在没有看书复习的状况下.看来人的潜力是很大的.至于这些锻炼对健康的影响,别人的传染病也难以上身,难得的是,我还能感觉他们的病是否会传染给我,故当初无论非典,禽流感还是猪流感等,对我都没作用,即使旁边有人得了我也不在乎.你的音乐也很好,如不介意,我也介绍几首.希望多出题。
回复 | 0
作者:有哲 留言时间:2016-03-11 19:05:29
仙遊野人博,
你开始的定义应写为:M的速度和加速度分别为U,b。m的分别为u,a。
正如你推理时用的。只是笔误,没影响做题。

你的推理解题正确。

“解析方法”与“隔离体力图方法“各有好处。

谢谢来访。
回复 | 0
作者:仙遊野人 留言时间:2016-03-11 12:10:53
又错,顾此失彼,(6)为

(6): ax*(m+M)*tg(theta)-ay*M=0.

推导公式不如以前犀利了,希望只是因为没复习。不过人终究会老会死,想起许多物理博士都忘了不会解了,还是应该欣慰的。某之所以感慨是因为最近练功使得将老花的眼又恢复正常。
回复 | 0
作者:仙遊野人 留言时间:2016-03-11 12:01:57
(6)需更正,打字失误,因为

(6): ax*(m+M)-M*ay=0 (前面少了这个M)

对(5)和(6)解ax,ay的线性方程组即得结果。
回复 | 0
作者:仙遊野人 留言时间:2016-03-11 08:23:22
公式(3)和(4)先改一下使符号正确:

(3): (ux-U)*tg(theta)=uy
(4): (ax-b)*tg(theta)=ay

用(1)消去(2)中的b, 再约去m,得到

(ux-U)*ax+uy*ay+g*uy=0,

再将(3)代入上式,消去uy得到

(5): ax*ctg(theta)+ay=-g, 其实这还是几何性质,看来多出某一步,暂不追究了。再用(1)消去(4)中的b,简化后得

(6): ax*(m+M)*tg(theta)-ay=0.

解(5)和(6)即得上述答案,注意修改加上负号。再通过(1)就得到斜面B的加速度b,上述答案改为正号。
回复 | 0
作者:有哲 留言时间:2016-03-10 21:48:55
仙遊野人博,在(4)之后,请加中间过程技巧,便于读者理解。谢谢来访。
回复 | 0
作者:仙遊野人 留言时间:2016-03-10 20:38:28
g不应是负值而是绝对值,在指出上述符号错后,三个结果全反号,及斜面右移而A左下移。
回复 | 0
作者:仙遊野人 留言时间:2016-03-10 20:20:03
更正:(3)与(4)右边符号反了,会影响一结果反号。
回复 | 0
作者:仙遊野人 留言时间:2016-03-10 19:46:43
好,我用守恒定律解了这问题,推算比你复杂,但不需作力分析。类似过去常用解析法解几何题,考试也如此,老师不高兴却也无奈何,反正不能算错,偷懒到家。现规定惯性坐标,水平向右,垂直向上为正。重力加速度g成负值,B的速度和加速度分别为U,b. A的分别为u,a. 后面带x,y表示分量。因水平方向无外力,动量守恒为

(d/dt)(m*ux+M*U)=0, i.e.

(1): m*ax+M*b=0

能量守恒为: (d/dt)[mgh+(1/2)m*(ux^2+uy^2)+(1/2)M*U^2]=0, i.e.

(2): mg*uy+m*ux*ax+m*uy*ay+MUb=0

另外两关系属几何性质:

(3): (U-ux)tg(theta)=uy
(4): (b-ax)tg(theta)=ay

最后得:

b=-mg*cos(theta)*sin(theta)/{m*[sin(theta)]^2+M},
ax=Mg*cos(theta)*sin(theta)/{m*[sin(theta)]^2+M},
ay=(m+M)g*[sin(theta)]^2/{m*[sin(theta)]^2+M}.

验证答案正确与否只需分别让M趋于零和无穷就知道,这里略去,只趣味性地假设为零,结果ay=g,b=-g*ctg(theta) - A视B为无物而挤开。
回复 | 0
作者:有哲 留言时间:2016-03-10 16:14:41
作者注:
请感兴趣的网友用多种不同方法解此题。
回复 | 0
作者:有哲 留言时间:2016-03-10 15:49:57
仙遊野人博,谢谢来访。
回复 | 0
作者:有哲 留言时间:2016-03-10 15:48:50
胡骑来博,谢谢来访。
回复 | 0
作者:有哲 留言时间:2016-03-10 15:46:48
嘎拉哈博,如感兴趣,可继续惯性系方法,把斜面的运动加入,增加概念理解。谢谢来访。
回复 | 0
作者:仙遊野人 留言时间:2016-03-10 15:29:55
希望不断有数理题出来。
据我记忆,中国教科书讲了惯性与非惯性坐标,如周衍伯的理论力学等。苏联教材讲得最细也很繁琐,中国的教材简化许多。那是老教材。
回复 | 0
作者:胡骑来 留言时间:2016-03-10 14:52:47
中国的教科书就是垃圾。连“惯性坐标系”是什么意思都没讲清楚
回复 | 0
作者:嘎拉哈 留言时间:2016-03-10 14:01:47
有哲。我懂了。中国教科书里好像没有直接在非惯性系里解题这样的方法。反正我没见过。我的方法应当得到相同的结果,不过要罗嗦多了。
回复 | 0
作者:有哲 留言时间:2016-03-10 12:02:41
嘎拉哈博,你没考虑A的右行对b的影响。请继续。谢谢来访。
回复 | 0
作者:嘎拉哈 留言时间:2016-03-10 08:49:53
存在概念错误。A,B 的加速度不相等。

(1) m(g-aby) = N cos(c)
(2) M x a = N sin(c)
(3) m x abx = N sin(c)
(4) m x g x aby = m(abx^2 + aby^2) + M x a^2

其中:

abx, aby = 滑块B的加速度的水平和垂直分量。
a = 斜面A的加速度(向右)

方程(4) 来自能量守恒: mgh = (1/2) m Vb^2 + (1/2) M V^2

h = (1/2) (abx^2 + aby^2) x t^2
Vb^2 = (abx^2 + aby^2) x t^2
V^2 = a^2 x t^2
回复 | 0
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2017. CyberMedia Network /Creaders.NET. All Rights Reserved.