量子力学首先是从普朗克-爱因斯坦开始,他们提出,光子的能量E等于一个常数hbar乘以其角频率omega:
E = hbar * omega
为方便起见,我们令hbar=1, 这个光子能量公式简化为
E=omega
德布罗意在此基础上推广,他说即使对于有质量的粒子,这个关系也应该成立,而对于静止粒子,E=m*c^2(爱因斯坦能量公式),为简便起见,令 c=1, 我们有
E=m*c^2 = m= omega
因此粒子可以用函数 exp {- i*m*t} 描述。
在x方向运动粒子该用什么函数描述呢?这可以视为一个参照系变换的问题。m*t可以视为四矢量 (m,0,0,0)与(t,0,0,0)的内积。(m,0,0,0)在经变换后就是(E, px, 0, 0),
(t, 0,0,0)则成为 (t, x, 0,0)。
因此,运动粒子的“波”函数应该为
psi = exp { -i (Et - px*x)}.
以上相当于只是 E = omega的假设,下一步的任务是找到产生上面这个波函数的方程。通常,我们是知道波动方程推导出波,现在是一个反向工程。
波动方程的一般形式是:
(一些算符)psi =0
上面的波函数psi,对时间取偏导得到 -iE * psi,对空间取偏到得到 i*px*psi。
而能量E与动量px之间是有关系的。
能量E与动量p的关系是
E^2 = p^2 + m^2
或者说 E^2 - p^2 - m^2 =0
如果直接套用这个关系,把E换成对时间的偏导,则E^2为对时间的二次偏导,对p^2也进行类似替换,我们得到Klein-Gordon方程。实际上,薛定谔首先采取的就是这个方案,但据说因为其计算结果不能给出正确的氢原子精细结构,被薛定谔放弃了。(在薛定谔之前,泡利已经用海森堡的矩阵力学算出了氢原子的能级)。
薛定谔最终采用的是牛顿力学的近似能量公式
E = p^2/2m
得出其薛定谔方程。
狄拉克采取的方案是对 E^2 = p^2 + m^2 开方
我在一篇博文中已经介绍。由此他推导出狄拉克方程,这个方程要求粒子有自旋,而此之前,泡利的自旋是人为地加入。