设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
     
  欧阳峰的blog
  以文会友,不亦乐乎!
我的名片
欧阳峰
注册日期: 2007-09-18
访问总量: 1,860,880 次
点击查看我的个人资料
Calendar
我的公告栏
本博客近期内不定期更新
最新发布
· 解码性别不平等——2023年诺贝尔
· 给电子运动拍照——2023年诺贝尔
· 银行和信息-2022年诺贝尔经济学
· 一个世纪的纠缠-2022年诺贝尔物
· 大繁至简:2021年物理诺贝尔
· 从相关性到因果性-2021年诺贝尔
· 机会平等与结果平等
友好链接
· 刘以栋:刘以栋的博客
· 高伐林:老高的博客
· 潜伏:潜伏的博客
· 2cents:2cents博客
· 伊萍:伊萍的多彩世界
· 谷语草鸣:谷语草鸣
· Beaubien2010:Beaubien2010的博
· 多思:多思的博客
· 汪翔:汪 翔
· 星辰的翅膀:星辰的翅膀
· 老秃:老秃笔侃山
· 水柔石刚:水柔石刚的博客
· 岑岚:岑岚的博客
· 枫苑梦客:梦中不知身是客
· 怡然:怡然博客
· 寄自美国:寄自美国的博客
· 椰子:椰风阵阵,思绪如河
· 山哥:山哥的文化广场
· 昭君:昭君的博客
分类目录
【旧贴回顾】
· 衔接量子与经典物理:2012年
· 数字通信介绍(5) 什么是MIMO?
· “免费”的代价
· 美国的收入差距:社会流动性(完
· 那是谁建的?谈谈大小政府之争
· 成功者的心态
· 政经随想(5)资本主义之后是什
· 亚洲传统价值在西方:财富还是包
【书山有路-心理篇(2)】
· 自律的本能
· 诚信的心理学
· 如何点燃天才的火花?
· 怎样对待老与死?(下)
· “双管齐下”的变革秘诀
· 实现自我,完成中年转变 -- 《中
· 成功有秘诀吗?《超人》读后
· 惊险小说中的上品 -- 《Ambler W
【书山有路-经济篇(2)】
· 大政府,小政府,聪明政府
· 回首金融危机的来龙去脉(下)
· 回首金融危机的来龙去脉 (上)
· 窥视右派的内心:读《美丽的美国
· 中国起飞的发动机 ——民工
· 介绍Peter Drucker
· 信息时代的新生态 – What Would
· 书评:《讨还资本主义的灵魂》
【书山有路-政治篇(2)】
· 一个犹太复国主义者的反思
· 从金融危机看政府的角色(下)
· 谁是乐善好施之人?
· 关于普世价值的随想
· 谈谈美国公知(4/4)
· 谈谈美国公知(3/4)
· 谈谈美国公知(2/4)
· 谈谈美国公知(1/4)
· 第三只眼看民主与专制
· 赖斯与她的自传《无上光荣》
【书山有路-传记篇(2)】
· 格林斯潘《动荡年月:新世界的冒
【学海无涯-数字通信】
· 关于数据权利的随想
· 数字通信介绍(5) 什么是MIMO?
· 数字通信介绍(4) OFDM为何如
· 数字通信介绍(3)信道编码
· 数字通信介绍(2)香农与信息论
· 数字通信介绍(1) 调制
【学海无涯-心理学(2)】
· 心态是衡量快乐的一杆秤
· 千里送鹅毛的心理学
【学海无涯-诺贝尔物理奖(2)】
· 给电子运动拍照——2023年诺贝尔
· 一个世纪的纠缠-2022年诺贝尔物
· 大繁至简:2021年物理诺贝尔
· 黑洞的神秘和神奇-2020年物
· 宇宙学中的理论和实验:2019年诺
· 别开生面的2018年诺贝尔物理奖
· 引力波探测:成就“不可能之任务
· 量子漩涡的奥妙-2016年物理诺贝
· 神秘的中微子
· 换灯泡,得诺奖
【政治经济-美国政治(2)】
· 机会平等与结果平等
· 我们的媒体怎么了?《美国大分裂
· 剖析美国国债难题:让数字说话
· 大政府能救美国吗?
【政治经济-美国教育(2)】
· 美国理科教育(5)教育改革话题
· 美国理科教育 (4) “不让一个
· 美国理科教育(3)成绩差距
· 谈谈美国理科教育(2)教育与国
【政治经济-美国经济】
· 关于美国经济的对话
· 奥巴马的赤字
【政治经济-国际政经】
· 阿富汗天上掉馅饼儿,福兮,祸兮
· 中国的优势在哪里?
· 关于美国核武新政策的随想
· 伊斯兰与西方文明:冲突还是和解
【政治经济-随想杂谈】
· 用事实说话:循证决策
· 关于维基解密与媒体的随想
· 谁打败了麦卡锡?
【政治经济-税法福利】
· 扯扯美国的“税务局丑闻”
· 关于税法数据的分析 (评《纽约
· 税季谈税
· 社会安全保险及其危机
【政治经济-健保改革(2)】
· “健保法案”为何“好事多磨”?
· 美国医疗保险:既太多又太少
· 健保法案解读(4)健保改革的目
· 健保法案解读(3)怎样从Medicar
· 健保法案解读(2)“公共选项”
【政治经济-健保改革(1)】
· 健保改革法案H.R.3962解析(1)
· 美国医疗服务真是倒数第一吗?
· 奥巴马能完成医疗改革大业吗?
· 旧文重贴:美国政治的下一个热点
【政治经济-金融危机(2)】
· 关于做空,赌博与趁火打劫的随想
· 从高盛的“欺骗”与“趁火打劫”
【政治经济-金融危机(1)】
· 冒险的代价:美国“信贷社危机”
· 旧贴重放:关于AIG副总裁辞职信
· 旧文重发:“奖金门”争论中震耳
· 华尔街的信用危机
【生活百感-心态心情(2)】
· 人到中年:从耕种到收获的过渡
【生活百感-子女教育(1)】
· 如何点燃天才的火花?
· 谈谈美国高中课外活动(下)
· 谈谈美国高中课外活动(上)
· 孩子该读文科还是理科?
· 中小学数学的存废之辩
· 虎妈猫妈,异途同归?
· 从“网上直播”引起的自杀谈起
· 育儿漫谈:“高指标人”和“多情
· 也谈大学教育:作为家长的期望和
【生活百感-新大陆点滴】
· 也谈一位“海二代”:国防部CIO
· 从“网上直播”引起的自杀谈起
· 民族主义是非谈
· 节日食谱:中式烤火鸡
· 美国进入“节俭时代”
【生活百感-人际社会】
· 谈谈《蜗居》中的三个男人
· 关于人际交流的模式: 何时需要较
· 参与公益,从娃娃抓起
· 科学与宗教之我见
【学海无涯-全球变暖(2)】
· 全球变暖的科学根据之检讨(7)其
· 全球变暖的科学根据之检讨(6)关
· 全球变暖的科学根据之检讨(5)全
【学海无涯-全球变暖(1)】
· 全球变暖的科学根据之检讨 (4)
· 全球变暖的科学根据之检讨 (3)
· 全球变暖的科学根据之检讨(2)
· 全球变暖的科学根据之检讨(1)
【学海无涯-博弈论】
· 也谈博弈
【学海无涯-科学方法】
【学海无涯-科普读物】
· 无所不在的“网络”
· 科学的未知与伪科学 -- 《科学的
【书山有路-科普篇(2)】
· 也论科普的风格 – 三本科普书的
· 人脑比电脑到底强在哪里?
· 无所不在的“网络”
· 科学的未知与伪科学 -- 《科学的
【历史纵横】
· 美国南北战争:到底是为了统一还
· 真相,正义与和解:“肯特屠杀”
· 谁打败了麦卡锡?
· 西雅图的“地下城”
【政治经济-美国贫困】
· 美国的救济陷阱
· 社会阶层分析的标尺:收入还是消
· 美国穷人:另外的百分之十五(下
· 美国穷人:另外的百分之十五(中
· 美国穷人:另外的百分之十五(上
【法律观察】
· 邦联旗与言论自由
· 美国最高法院关于GPS跟踪的判决
· 案例分析:“米兰达警告”与“毒
【好文欣赏】
· 好文欣赏:《糖水》
· 转载mendel文:《从“胎教”开始
· 甘阳:自由主义:贵族的还是平民
· 【转贴】朱学勤:金重远 复旦首
· 好文推荐:村外
· 酒到陈时味方醇
· 转贴:“專訪袁偉時:不恪守法治
· ZT: 铁腕戴上丝绒手套
· 血缘(转帖)
· 秦晖: 全球化的第三种可能
【政治经济-美国教育(1)】
· 美国理科教育(2)教育与国力(
· 谈谈美国中小学理科教育(1)关
· 谈谈美国中小学理科教育(1)关
· 从华府公立学校总监Michelle Rhe
【政治经济-美国政治(1)】
· 奥巴马2.0?
· 从华府公立学校总监Michelle Rhe
· 也谈工会
· 谈谈美国的民主制度:“一票定乾
【生活百感-心态心情(1)】
· 放暑假乐!休博到九月。
· 初秋随想
· 人生如流水,只有变化是永恒
· 人性与理性:你是“99一族”吗?
· 随感:后院的野猫
【生活百感-愚人节笑话】
· 祸中祸:日本核电站释放超级细菌
【学海无涯-心理学(1)】
· 诡异的数字暗示:参照效应
· “诱饵效应”和“心理相对论”
· 从“破釜沉舟”谈起
· 千里送鹅毛的心理学
【学海无涯-诺贝尔物理奖(1)】
· 诺贝尔物理奖介绍2007:巨磁阻和
· 闲谈CCD
· 闲谈光纤
【学海无涯-科技译文(2)】
· 引力究竟是什么?
【学海无涯-科技译文(1)】
· 大脑是怎样工作的?
· 人类终将访问火星吗?
· 战争是我们生物本性的归宿吗?
· 科学重要吗?
【书山有路-政治篇(1)】
· 自我推销的范文- 读奥巴马的《大
· 信仰与政治
· 伊斯兰与西方文明:冲突还是和解
· 《世界是平坦的》书评
【书山有路-心理篇(1)】
· 面对灾难,你准备好了吗?
· 完整大脑与后信息时代 《A Whole
【书山有路-科普篇(1)】
【书山有路-经济篇(1)】
· 古狗随想录(下):一统天下,“
· 古狗随想录 (上):“掌控中的
· 关于做空,赌博与趁火打劫的随想
· 信息时代的新生态 – What Would
【书山有路-文学篇(1)】
· 一扇管窥当代大学生心灵的窗户—
· 道可道,非常道 – 读《遥远的救
【书山有路-传记篇(1)】
· 华盛顿政治的一扇窗口:Tenet自
· 《食祷爱》:心灵疗伤的良方
· 股神巴菲特的人生 ——《滚雪球
· 洋“愚公”的故事 – 《Three Cu
【学海无涯】
· 关于数据权利的随想
· 随机对照试验与扶贫:2019年诺贝
· 宇宙学中的理论和实验:2019年诺
· 充满“科学元素”的2018年诺贝尔
· 别开生面的2018年诺贝尔物理奖
· 行为经济学和2017年诺贝尔经济学
· 引力波探测:成就“不可能之任务
· 关于认识论:涌现和贝叶斯法则
· 神秘的中微子
· 大数据经济学 (2015年诺贝尔经济
【政治经济】
· 川普走了,常态回来了吗?
· 拜登真能成为“团结美国”的总统
· 拜登:生逢其时的平庸候选人
· 我们的媒体怎么了?《美国大分裂
· 对“全民基本收入”的数学分析
· 杨安泽(Andrew Yang)和《对普
· 论保守派该投票克林顿
· LGBT与“宗教自由案”
· 华人和黑人:盟友还是对手?
· 奥巴马健保的新考验
【生活百感】
· 如何点燃天才的火花?
· 谈谈美国高中课外活动(下)
· 谈谈美国高中课外活动(上)
· 放暑假啦!休博到秋天
· 孩子该读文科还是理科?
· 休博到明年一月
· 停博一阵
· 也谈一位“海二代”:国防部CIO
· 纪念汶川地震五周年
· 中小学数学的存废之辩
【朝华午拾】
· 为什么调制解调器会有不同速度?
· 什么是网路电话?
· 旧文重贴:谈谈学习中的思考
· 菜鸟上路——我的第一份工
· 怀念敬爱的黄老师
· 感恩节前话感恩
· 数学竞赛与我
· 哲人讲座
【书山有路】
· 北欧模式与《北欧理论》
· 自律的本能
· 关于认识论:涌现和贝叶斯法则
· 性别差异与神经心理学
· 保守主义该怎样帮助穷人?
· 诚信的心理学
· 如何点燃天才的火花?
· 怎样对待老与死?(下)
· 怎样对待老与死?(上)
· 一个犹太复国主义者的反思
【学海无涯-诺贝尔经济奖】
· 解码性别不平等——2023年诺贝尔
· 银行和信息-2022年诺贝尔经济学
· 从相关性到因果性-2021年诺贝尔
· 拍卖中的信息和博弈-2020年
· 随机对照试验与扶贫:2019年诺贝
· 充满“科学元素”的2018年诺贝尔
· 行为经济学和2017年诺贝尔经济学
· 怎样制定好的合同?2016年诺贝尔
· 大数据经济学 (2015年诺贝尔经济
【政治经济:政经随感(1)】
· 简讯:美国竞选经费比往年减少
· 再谈科学的威力与局限
· 读奥巴马“国情咨文”有感
· 政经随想(5)资本主义之后是什
· 政经随想(4):民主与市场经济
· 政经随想(3)美国的末日到了吗
· 政经随想(2) 美国经济困境与全
· 政经随想(1)关于美国国债的几
【政治经济:亚裔爬藤(1)】
· 亚裔学子的大学门槛:几本有关书
· 虎妈猫妈,异途同归?
· 亚裔学子的大学门槛:统计证据一
· 亚裔学子:大学门槛格外高
【政治经济:亚裔爬藤(2)】
· 高院判决,平权与亚裔入学
· 控告哈佛歧视案讨论小结(转)
· 反抗种族歧视,何不从帮助亚裔子
· 亚洲传统价值在西方:财富还是包
【书山有路-心理篇(3)】
· 性别差异与神经心理学
· 怎样对待老与死?(上)
· 思维快慢道(下)
· 思维快慢道(中)
· 思维快慢道(上)
· 如何避免决策误区(下)
· 如何避免决策误区(上)
· 沟通技巧:“粘性学”(下)
· 沟通技巧:“粘性学”(上)
· 习惯的力量
【政治经济-12大选】
· 论保守派该投票克林顿
· 美国大选投票:除了“罗马”别无
· 谁动了Medicare的奶酪?(下)
· 谁动了Medicare的奶酪?(上)
· 那是谁建的?谈谈大小政府之争
· 正戏开场——简评美国两党全国大
【书山有路-宗教篇】
· 关于道德与宗教问题与网友的讨论
· 进化论是上帝的克星吗?(下)
· 进化论是上帝的克星吗?(上)
【政治经济-收入差距】
· 收入差别,市场经济与左右之争
· 保守主义该怎样帮助穷人?
· 美国的收入差距:社会流动性(完
· 美国的收入差距:政府能做什么?
· 美国收入差距的原因
· 美国的收入差距:谁是最富和最穷
· 美国的收入差距:中产阶级与贫穷
· 美国的收入不平等:非主流意见
· 美国收入不平等:引言与现状
【政治经济-美国华人】
· 华人和黑人:盟友还是对手?
· 亚裔传统月:关于美国亚裔的几个
【政治经济:政经随感(2)】
· LGBT与“宗教自由案”
· 奥巴马健保的新考验
· 美国的言论自由与政治正确
· 美国铁路面面观
· 提高执政效率:自适应(下)
· 提高执政效率:自适应(上)
· 谁是乐善好施之人?
· 美国中期选举:谁是赢家?
· 围观美国打老虎
· 美国教育体系中的“扶贫”措施
【书山有路-经济篇(3)】
· 《国家为何失败》读后
· 北欧模式与《北欧理论》
· 关于认识论:涌现和贝叶斯法则
· 从《大空头》看颠覆性创新
· 收入差别,市场经济与左右之争
· 保守主义该怎样帮助穷人?
· 从金融危机看政府的角色(上)
· 资本:贫富差距之源?(下)
· 资本:贫富差距之源?(中)
· 资本:贫富差距之源?(上)
【政治经济-2020大选】
· 川普走了,常态回来了吗?
· 拜登真能成为“团结美国”的总统
· 2020,美国保守派选民该挺谁?
· 拜登:生逢其时的平庸候选人
· 对“全民基本收入”的数学分析
存档目录
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
08/01/2021 - 08/31/2021
02/01/2021 - 02/28/2021
01/01/2021 - 01/31/2021
10/01/2020 - 10/31/2020
09/01/2020 - 09/30/2020
08/01/2020 - 08/31/2020
07/01/2020 - 07/31/2020
01/01/2020 - 01/31/2020
11/01/2019 - 11/30/2019
10/01/2019 - 10/31/2019
08/01/2019 - 08/31/2019
07/01/2019 - 07/31/2019
05/01/2017 - 05/31/2017
04/01/2017 - 04/30/2017
03/01/2017 - 03/31/2017
02/01/2017 - 02/28/2017
11/01/2016 - 11/30/2016
10/01/2016 - 10/31/2016
07/01/2016 - 07/31/2016
06/01/2016 - 06/30/2016
04/01/2016 - 04/30/2016
02/01/2016 - 02/29/2016
01/01/2016 - 01/31/2016
12/01/2015 - 12/31/2015
11/01/2015 - 11/30/2015
10/01/2015 - 10/31/2015
09/01/2015 - 09/30/2015
06/01/2015 - 06/30/2015
05/01/2015 - 05/31/2015
04/01/2015 - 04/30/2015
03/01/2015 - 03/31/2015
02/01/2015 - 02/28/2015
01/01/2015 - 01/31/2015
11/01/2014 - 11/30/2014
10/01/2014 - 10/31/2014
09/01/2014 - 09/30/2014
12/01/2013 - 12/31/2013
11/01/2013 - 11/30/2013
10/01/2013 - 10/31/2013
09/01/2013 - 09/30/2013
06/01/2013 - 06/30/2013
05/01/2013 - 05/31/2013
04/01/2013 - 04/30/2013
03/01/2013 - 03/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
11/01/2012 - 11/30/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
08/01/2012 - 08/31/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
12/01/2011 - 12/31/2011
11/01/2011 - 11/30/2011
10/01/2011 - 10/31/2011
09/01/2011 - 09/30/2011
08/01/2011 - 08/31/2011
07/01/2011 - 07/31/2011
06/01/2011 - 06/30/2011
04/01/2011 - 04/30/2011
03/01/2011 - 03/31/2011
02/01/2011 - 02/28/2011
01/01/2011 - 01/31/2011
12/01/2010 - 12/31/2010
11/01/2010 - 11/30/2010
10/01/2010 - 10/31/2010
09/01/2010 - 09/30/2010
07/01/2010 - 07/31/2010
06/01/2010 - 06/30/2010
05/01/2010 - 05/31/2010
04/01/2010 - 04/30/2010
03/01/2010 - 03/31/2010
02/01/2010 - 02/28/2010
01/01/2010 - 01/31/2010
12/01/2009 - 12/31/2009
11/01/2009 - 11/30/2009
10/01/2009 - 10/31/2009
09/01/2009 - 09/30/2009
08/01/2009 - 08/31/2009
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
换灯泡,得诺奖
   

2014年诺贝尔物理学奖的得奖工作是换灯泡。更具体地说,是用发光二极管(LED)来取代我们习以为常的白炽灯和荧光灯。

LED最明显的好处是节能。在同样亮度下,它的耗电量大约是白炽灯的二十分之一,荧光灯的四分之一。目前全球电力的百分之二十用于照明。所以“换灯泡”带来的电力节省是相当可观的。据估计,如果全中国都改用LED照明,节约的电力将比三峡发电量还多。而且因为LED灯泡的用电量低,在没有电网的地方可以用太阳能,风力等局部供电照明,改善边远地区民众和野外作业者的生活质量。

虽然LED目前价格仍然较贵,但它寿命长得多,不仅省下了换灯泡的材料费还大大节省了维护人工(二战时期,五角大楼每天要更换六千个灯泡)。而且LED灯可以随意控制亮度甚至颜色,开创了很多新的照明选项。除了常规照明外,LED还是很多现代彩色显示屏和仪表指示中不可缺少的部件。

LED的原理在四十年代就被发现了,商业化的LED到了六十年代也出现了。但是LED用于照明,却是九十年代才有的。为什么拖了那么久呢?原因是LED家族中缺少一位成员:蓝光LED

照明通常需要白色光源,而LED的光色与其材料和结构有关,所以都是单色的。我们都知道,视觉上的白色(或其它任何颜色)可以用红,绿,蓝三种颜色的光来合成。所以蓝色光源对于白光照明来说是必须的。另一种产生白光的办法是用荧光材料。荧光材料可以吸收短波长的光,发出长波长的光。例如我们熟悉的荧光灯,就是通过荧光材料把汞蒸气发出的紫外光转变成白光。用这个办法,也需要波长在可见光低端(蓝色或紫色)的光源。

除了照明和显示以外,蓝光的短波长还有其它好处。例如,我们常用的储存介质CDDVD都是用与LED机理相似的半导体激光器发出的激光来存取数据的。而激光的光斑大小是与波长成正比的。所以蓝光激光比红光的光斑小,在同样面积上可以储存的数据也多。所以蓝光光盘的储存量更大。

2014年的诺贝尔物理奖,颁给了高效率蓝光LED的发明者:日本名古屋大学的教授赤崎勇(Isamu Akasaki)、天野浩(Hiroshi Amano)和美国加州大学圣塔芭芭拉分校教中村修二(Shuji Nakamura)

既然蓝光LED如此举足轻重,那为何它却姗姗来迟,比兄弟们落后三十年呢?

原来,LED的发光原理是利用半导体的特性,而其发光波长与所用材料的性质有关。虽然理论上可以预计每种材料的发光波长,但要做成器件,还需要克服重重障碍。蓝光LED的发展就经历了这样一个曲折的过程。

蓝光LED的候选材料主要有两种:硒化锌和氮化镓。一开始,氮化镓不被人看好,因为它的晶格常数与衬底(蓝宝石)相差太远,要长成完美的晶体几乎不可能。然而,硒化锌被研究多年后,仍然未能成功。这是因为它虽然容易生长,但也有致命的弱点:这种晶体很脆弱所以寿命不长,而且对晶体缺陷很敏感。于是日本的几个研究者,也就是这个故事的主角,抱着“独辟蹊径”的想法,再次尝试氮化镓。从八十年代起,他们利用当时新出现的金属有机物化学气相沉积(MOCVD,又称金属有机物气相外延 MOVPE)技术,长出了高质量的氮化镓晶体。在此基础上,他们又克服了掺杂,器件结构等难题,终于在九十年代初期制造出了商业化的蓝光LED。随后,基于类似技术的高亮度紫外光和其它颜色的LED也相继问世。“换灯泡”终于变成了现实。今天,基于这个技术制造波长更短的LED,仍是一个活跃的研究领域。

我们称蓝光LED的工作为“换灯泡”,不仅因为它和照明有关,也因为其中的技术挑战也与众不同。这个工作所需要的半导体理论和有关的材料性质都已经为人所知,所以“换灯泡”看来并没有非常亮丽的“技术含量”,只是个“力气活儿”。然而,在半导体这一行,知道理论和作出东西,特别是能商业化的东西,其中的距离何止千万里。这次得奖的三位蓝光LED发明人都是在日本作出的工作。他们科研的经历也许反映了教科书上不常见到,但在现实中却相当普遍的一种科研模式。在这里,我们就讲讲其中一个研究者中村修二的故事。

很多科研人员的职业诀窍是追逐热门,也就是关注,致力于公认重要的题目。而中村修二的经历却反其道而为之:选择冷门。

1979年,中村从一个日本二流大学——德岛大学(University of Tokushima)拿到电子工程硕士。他决定不到大公司去爬梯子,而是到了一个小城市四国,加入了一家小公司日亚(Nichia)。在那个200人的公司中,只有三个研发人员,而中村是其中唯一的一个硕士。

中村一开始的工作是制造红光和黄光LED所需要的晶体。这是个惊险的工作,因为他的炉子经常会爆炸。幸运的是他至今毫发无损,而且练出一手焊接石英的绝活儿。

1985年,因为那些晶体销路不好,公司要求中村试制LED成品。经过三年的自学和摸索,中村创造了自己的工艺,制造出了质量优良的LED产品。但是一个小公司很难在拥挤的市场上得到立足之地。中村认为他们还是要走“冷门”路线。他说服了公司主管,得到三百三十万美元的研究经费,开始进军当时很少人问津的蓝光LED研发。

1988年,中村来到佛罗里达大学,跟一个研究团队学习当时新型的MOCVD技术。但是因为他没有博士学位,他们把他当作技术员,要求他组装起一台MOCVD机器。通过十个月,每周七天,每天十六小时的辛勤工作,他终于完成了这项任务,同时对MOCVD的技术和设备有了透彻的了解。

这个经历也使中村立志要拿到博士学位。为了多发论文,他又一次选择了冷门:不是研究“众望所归”的硒化锌,而是去啃氮化镓这个硬骨头。

首先要对付的,就是晶体生长的难题。因为氮化镓的晶体常数与蓝宝石衬底相差太大,直接生长的晶体会有很多缺陷。这时候,名古屋大学的研究团队(2014年同时得奖的赤崎和天野)发明了用氮化铝作为缓冲层解决晶体常数不配合的问题。中村沿着类似的思路,使用低温下生长的氮化镓作为缓冲,并且发明了使用两个垂直气流的双气流MOCVD技术,使得晶体生长环境更加均匀,进一步减少晶体缺陷。因此他在1991年得到了世界上性能最好的氮化镓晶体。

下一个难题是掺杂。为了得到所需要的性能,需要在一部分的氮化镓里掺入镁原子。但不知为何,掺杂总达不到预想的效果。1988年,名古屋大学团队的发现:用低能电子照射掺杂后的晶体,能提高掺杂的效果。1989年,他们制作出了第一个蓝光LED。1992年,中村经过文献搜寻和反复试验后认定:这说明是晶体生长过程中的氢离子在“捣乱”。他用更方便的退火方法赶走了氢离子,终于得到了想要的材料。

但是这时候的蓝光LED功率很小,效率也很低,还不能商业化。在九十年代,这两个团队采用了别人发明的“双异质结(double heterostructure)”技术(2000年诺贝尔物理奖),也就是在两层氮化镓之间夹一层氮化铟镓材料(中间还有两层氮化铝镓)。这样把正负载流子集中到一起,提高了两者结合产生光子的机会。这也是当年时髦一时的“量子阱”技术的应用。另一个好处是:通过控制氮化铟镓中铟的含量,可以调整材料性质,产生不同颜色的光。可以预料的是,生长这样的结构不是容易的事。但通过中村发明的双气流MOCVD技术,他得到了很好的结果。在九十年代中期,中村与名古屋大学团队几乎同时作出了高亮度的蓝光LED和激光器。1999年,中村所在的日亚公司开始销售蓝光LED和蓝光/紫光固体激光器。今天,这个公司仍是这个巨大市场中的大玩家。“冷门”终于变成了主流。(后来中村将日亚公司告上法庭。2005年和解的结果,日亚公司补发中村约九百万美元的“奖金”。)

开发这些技术的同时,中村发表了大量的论著,得到了博士学位。他的发表策略也是走冷门:很多文章发表在知名度不高的杂志上。这主要目的是避开公司的注意,免得引起知识产权的麻烦。2000年,他终于踏入了学术界,成为美国加州大学圣塔芭芭拉分校的教授,主持一个蓝光LED研究中心。

中村的职业道路很有“日本特色”。他并非一开始就很有野心而只是把每件事做好,工作起早贪黑,搞定所有细节。先是十年练手打好了基础,然后十年磨一剑专攻一个难题,终于修成了正果。但是他也不是听天由命,无所追求的人。在苦心研发的产品不被市场认可,在公司的地位和价值受到同事质疑的状态下,他“拍案而起”,直接向大老板建议。然后用加倍的辛勤工作来报答公司给予的支持,终于证明了自己。其实也不光是日本人,整天干着平凡琐事科研人员在世界的哪里都是多数。但在这样的处境下能保持兢兢业业的心态,而且还不忘力求上进,这就可能有些文化因素了。

我们还记得上一年(2013年)的诺贝尔物理学奖,得奖工作是希格斯理论。那是个非常高明的想法,展示在一个高度简化的理论系统中,就大功告成。至于填入种种细节发展成精确描写基本粒子的标准模型,那就是另一回事了。而今年表彰的工作恰恰相反。基本的理论和技术都已经有了。但要作出商业化的产品,还有无数的细节要考虑。它也许不需要光彩耀目的天才,但需要几十年如一日的辛勤劳动积累的经验和技巧,无数参数调节和设备改进,不是毕其功于一役而是通过很多一步一个脚印的小进步终于达到目标。这两个工作的意义也成鲜明对比。寻找希格斯粒子是探索人类知识的新疆界。蓝光LED则是运用已知的物理原理和研究结果来制造有重大价值的产品。蓝光LED的研发过程中也积累了大量宝贵的知识,但那些大多数是只适用于某个具体系统的,不具有普遍意义。这个工作的意义在于它改变了人们的生活,而不是扩展了人们的知识体系。

可能会有这样的感觉:只有希格斯之类工作才是诺贝尔奖的对象。而蓝光LED应该属于工程而不是科学。但实际上,按照阿尔弗雷德·诺贝尔的原话,物理奖的对象是“在物理领域做出最重要的发现或发明的人”。其中的“发明”,也许就包括了重要产品或实用技术。事实上,诺贝尔物理奖也一直在平衡这两类工作。就拿近年来的奖项来说,双异质结二极管与集成电路(2000),巨磁阻(2007)以及光纤和CCD(2009)都是应用型工作。2014年,不仅物理奖是应用型的,而且化学奖(超分辨显微技术)也是物理原理的应用。也许随着学科的成熟,应用型研究会在物理领域中占越来越重要的作用。


【附注】关于中村的故事在科学网上有很多讨论。有兴趣的读者可以搜索“中村 科学网”。


【附录】关于发光二极管(LED)的简单科普

我们可以把半导体理解为一个电影院。观众们都是懒人,如果有椅子坐就不愿意站起来(也就是说站着的人比坐着的能量高)。但他们可以从一个座位换到旁边的空位,不用消耗能量。

纯粹的半导体(称为本征半导体)相当于一个满座的电影院。虽然每个人(半导体中的电子)并没有被绑在椅子上,但因为没有空座,谁也不能移动。这种半导体是不能导电的。

但是通过在半导体里掺进微量杂质,我们可以减少一点人数。这样有了一些空位子,旁边的人就能换位过去,又空出位置给更远些的人。于是所有人都能移动了。(换一个角度看,也可以说是空位子在反方向移动。)这种有空位子的半导体称为P型半导体,它能传导电流。而掺进另一种杂质,可以增加人数。这样就有些没有座位而站着的人。他们反正是站着,就可以自由移动。这种有多余人(电子)的半导体称为N型半导体。它也能传导电流。

当两种半导体相遇时,接触点上N型中多余的人就会坐到P型中多余的座位上。这样能量降低了,多余的能量就转化成了光。这就是LED发光的原理。这样的接触点就称为PN结。PN结不光是LED,也是所有半导体器件(如二极管,三极管)的关键结构。当然,要持续发光,就需要不断补充多余的人和空座。这就需要外接电源提供能量。

要造出好的LED,首先要造出有效的N型和P型半导体。对于氮化镓,它本身的晶体缺陷就造成了N型材料,这没有问题。但制造P型材料却一直很困难,直到今年的得奖者发明了电子照射和退火的方法来赶走捣乱的氢离子。这样PN结就有了。当然,要让人和空椅子快速移动(从而在PN结上一直有更快的人/椅结合),电影院不能有很多柱子,栏杆那样的障碍。也就是说,半导体晶体不能有太多的缺陷。中村发明的双气流MOCVD技术,就大大减少了缺陷的浓度。最后,他们采用的双异质结的结构,相当于把站着的人和空位子都引导到一个较小的空间,让它们相遇的机会大大增加,也就提高了LED发光强度。

对于还想深究的读者,也许下面的解释有些用处:

半导体里的电子有两个能带,之间有 一定的间隔(成为禁带)。低能量的能带相当于坐着的人,高能量的相当于占着的人。电子有个泡利不相容原理,相当于一个座位只能坐一个人。本征半导体中的电子正好填满低能带,而高能带是空的。P型半导体的低能带有些空位(成为空穴)。N型半导体的低能带是填满的,而在高能带上有些电子。电子要从低能带跳到高能带就需要一定的能量(等于禁带的宽度)。这在室温下很少发生。而当高能带上的电子与低能带上的空穴结合时,就会释放能量,形成光子。光子的波长是由禁带的宽度决定的


参考文章:

诺贝尔委员会官方科学介绍 http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/advanced.html

科学背景介绍中文译文:http://www.semi.org.cn/news/news_show.aspx?ID=39305&classid=125

《科学美国人》2000年关于中村的故事 http://www.scientificamerican.com/article/blue-chip-2000-07-05/


有关博文:

半个世纪后的大奖:2013年诺贝尔物理奖介绍

http://blog.creaders.net/fouyang/user_blog_diary.php?did=204606


衔接量子与经典物理:2012年物理诺贝尔奖介绍

http://blog.creaders.net/fouyang/user_blog_diary.php?did=146660


谈谈2011年物理诺贝尔奖:成功的道路很多条

http://blog.creaders.net/fouyang/user_blog_diary.php?did=104374


石墨烯的传奇:2010年诺贝尔物理奖介绍

http://blog.creaders.net/fouyang/user_blog_diary.php?did=81822


诺贝尔物理奖介绍2009: 闲谈CCD

http://blog.creaders.net/fouyang/user_blog_diary.php?did=55767


诺贝尔物理奖介绍2009: 闲谈光纤

http://blog.creaders.net/fouyang/user_blog_diary.php?did=54652


对称破缺之美:2008年物理诺贝尔奖工作介绍

http://blog.creaders.net/fouyang/user_blog_diary.php?did=93171


诺贝尔物理奖介绍2007:巨磁阻和自旋电子学

http://blog.creaders.net/fouyang/user_blog_diary.php?did=74278


 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.