我不了解川普,更没有特别喜欢川普。当初选川普,只是因为反感拜登。 我并不觉得川普有多能干,当总统有多大建树。只是从一而再再二三,接连不断的负面报道中看见,川普很艰难,很伟大。/文毕
《数学学习13/30》
上一则讲到欧拉创立了立体几何学,将数学推向了高峰。接着谈。具体来说,欧拉的立体几何,所强调的是整体,即从宏观的角度去研究曲面。如果从宏观转入微观,研究曲面在一点微小区域内的特性,结果会如何呢?听起来,对微小局部的研究,纠缠细枝未节,远不如宏观研究那么波澜壮阔生动有趣。可实际情况正好相反,立体几何学被归入了应用数学与工程学的范畴,几何学从更抽象的角度,选择了微观分析。
第一个对曲面进行局部分析的是高斯,其思想可能源于他地图绘制,用平面表示球面的关系所致。高斯关于曲面局部分析的工作,奠定了微分几何学的基础和方向,被誉为微分几何之父。要了解髙斯的工作,需要先了解一下曲率的概念。通俗地讲,对于一条曲线来说,某一点的曲率就是曲线在该点的弯曲程度,可以用一个数量来表示。比如圆,圆越大,圆弧弯曲的程度越小,圆越小弯曲的程度越大,其曲率与半径成反比,即1/r。
对于一个空间曲面,情况起了质的变化,曲面上任意一点的曲率是什么呢?以马鞍形曲面为例,取中心一点,顺着马头至马尾的方向,曲面是向上弯曲的;如果在马腰处左右观看,曲面则是向下弯曲的;从不同的方向考察,弯曲的方向和程度都是不一样的,看上去似乎很复杂。如果遵循这种思路,问题难于上青天,看看数学家是怎样思考的。
高斯对曲面上一点的曲率作了十分巧妙的处理。对于平滑曲面上的一点P,能反映这一点小区域内特性的平面,就是过这一点的切平面。想象过这一点作一条与切平面垂直的直线,再通过过直线作一个平面,平面与曲面相交得到一条过P点的空间曲线;如果将平面绕直线旋转,会得到另一个平面,也会得到另一条过P点与曲面相交的空间曲线;继续旋转,可以得到一束过P点的空间曲线。这一束曲线中,有无数条曲线,但只有两条最重要的曲线,一条是拥有最大曲率的曲线,另一条是拥有最小曲率的曲线,高斯发现,这两条曲线相互垂直,他计算了最大曲率和最小曲率,并据此定议了曲面在一点处的总曲率。这就是著名的高斯曲率。
讨论这一问题有什么意义呢?我们不仿停下来回顾下。在此之前,所讨论的几何学都是玩具规模的,我们可以随手画一个点一条线,或者画一个坐标系,我们将自己置身于研究的几何形状之外,高高在上冷眼旁观,来研究它的特性,或倾斜或平坦或笔直或弯曲。如果将我们考察的对象换作一个无穷大的曲面,我们位于其中,小得微乎其微,既不能逃离这个曲面,也看不到曲面之外的花花世界。这种情况下,只能在有限的范围内做几何研究,我们能了解这个曲面什么特性呢?能否辨别它是平坦还是弯曲呢?如果它是弯曲的,其弯曲程度是多少呢?我们能计算出它的曲率吗?如何在曲面上建立坐标系?如果能建立,那么曲面上两个不同的坐标系如何联系呢?正所谓,不识庐山真面目,只缘身在此山中。
(这是数学问题,也好像是思维问题,当我们孜孜不倦锲而不舍的地去散布或接受某种理念,某种思潮某种感悟,或某种真相的时候,我们的价值观道德观以及我们的视野我们的思维,有多大程度的扭曲呢?……)扯远了,回来谈单纯的数学问题。高斯的工作,引出了一系列的新思考与新问题。所幸,江山辈有人才出,新一代的数学家对这些问题给予了解答。(下集继续折腾)
|