光速处处在变时时在变
首先需要明确一个概念,即在任何一个参照系中,原点的光速永远是c0。这是因为原点的光速永远是标准,一个国际标准,被设成一个常数,不存在被测量的问题。那么相对于原点的标准光速,其它地方的光速是变化还是不不变的?
用现代光学原子钟,离地面变化不到半米就可以测到引力红移。如果我们认为物理学定律保持不变,引力红移则说明在地表附近,光速随高度的变化而变化。另外,远在两万公里高空的GPS卫星,其时钟比地面时钟每年快43微秒。同样,如果我们认为物理学定律保持不变,时钟变快则说明GPS卫星所在的两万公里高空的光速比地表要快。观测到的中子星的引力红移及太阳的引力红移也都说明光速处处在变。
在物理宇宙学里,哈伯发现来自遥远星系光线有红移,并且,红移与它们的距离成正比。这条定律是因证实者哈伯而命名。今天经常被援引作为支持大爆炸的一个重要证据。如果我们认为遥远星系上的物理学定律与我们相同保持不变保持,哈伯红移说明遥远星系附近的光速比我们的慢。换句话来说,一亿光年前的光速比现在的要慢。这说明光速时时在变。
天体物理学发现在宇宙的不同角落,通过引力透镜现象发现光速在大的宇宙尺度有无法解释的变化。众所周知,物质可以造成光速变化。但在大的宇宙尺度,光速的变化无法用已知物质来解释。有时没有物质,有时已知物质只能解释十分之一的变化。所以科学家们假设有暗物质造成在大的宇宙尺度光速的变化。但是暗物质在现有的物理学理论框架中,很难找到支持。同时,到目前为止,还没有人检测到暗物质。也许暗物质根本不存在。 在大的宇宙尺度,光速不变的假设也许根本没必要,也不成立。就像海水的温度,局部是相同的,但在大的尺度,如赤道与北极,则温度很难相同。但是不管如何解释这种现象,但在大的宇宙尺度,光速处处在变是个铁的事实。当然,在地球附近的真空,很难用现有的仪器测到这种变化。这种变化的尺度往往是在一百万光年以上。
引力是由光速变化造成的
根据量子力学基本粒子最基本的运动方程是Klein-Gordon方程。假设光在空间位置r和时间t的速度为c(r,t),是个可变量。并且,进一步假设在光速变化时,Klein-Gordon方程为:
则可根据该方程推导出由光速变化造成的引力加速度为(详细推导请见参考该文献):
g = -c(r,t)∇c(r,t)
或简写成:
g = -c∇c
这里g是引力加速度,∇c(r,t)是c(r,t)的梯度。也就是说,如有一物体在时间t时的位置为r,则其由光速变化造成的加速度为g,与其质量m无关。
如果只考虑物质造成的光速变化,忽略暗物质暗能量等其它可能造成的光速变化的因素,则光速变化与引力势Φ的关系是:
c = c0(1+Φ/c02)
这里c0为标准光速,是个常数。该公式算出的引力红移与引力时钟变慢,符合实际观察。同时,该公式可以解释光线的引力弯曲。
引力势Φ可以通过解如下泊松方程获得:
∇2Φ = 4πGρ,
这里G是引力常数,ρ是质量密度。
利用引力势Φ,原引力场方程可以写成:
g = -(1+Φ/c02)∇Φ = -(c/c0)∇Φ
在地球附近,引力势Φ不大,但是标准光速c0的值却很大。 所以Φ/c02非常小,可以忽略不计。这样就造成地球附近c≈c0。这时,引力场方程可以近似为:
g = -∇Φ
而该方程便是著名的牛顿的引力场方程,牛顿的引力学得到了重建。而这里重建的条件是光速变化的假设及量子力学中的Klein-Gordon方程。
牛顿的引力场方程简单、易懂、和使用,已被无数的观测与实验所验证。由于该方程直接给出加速度,有了物体的加速度之后,便可直接得出该物体的运行轨迹。只是对于水星轨道,该引力方程计算出的结果与观测有非常小的偏差。
由于牛顿的引力方程是新的引力场方程在c≈c0情况下的近似。如果考虑到在太阳附近,由于太阳的质量是地球的300,000倍,引力势远远大于地球附近。而同时水星相对于其它行星离太阳最近,所以水星所在的位置的光速不再满足c≈c0。这时,若将牛顿引力方程g = -∇Φ 修正为新的引力学方程g = -(c/c0)∇Φ时,则原预测偏差可以得到修正。
所以,只要将牛顿引力方程做一个小小的修正,便可准确预测水星轨道近日点的进动。但是,当用广义相对论极为复杂与难懂的公式去修正偏差时,由于太过于复杂,就连爱因斯坦都需要当时世界上最优秀的数学家帮他计算水星轨道近日点进动。 另外,广义相对论太复杂,没法推算出行星的椭圆轨道。所以它只能在经典理论给出的椭圆轨道基础上,算出偏差。同时,广义相对论必须假设太阳是个质量均匀一个完全的球体。如不如此,或加入其它行星引力干扰,广义相对论复杂到没有人知道如何计算。
相比之下,经典的引力场方程g = -∇Φ,不但可以相对简单地推算出行星的轨道为椭圆,同时也可以处理多体与质量不均匀的情况。不管是解析解还是数值解,都简单、易懂。而在强引力场情况下,也就是当地光速c明显不同于标准光速c0时,只需将该引力方程作小小的修正便可。即将其修正为:g = -(c/c0)∇Φ,便可修正原方程的误差。
结束语
如果人类不能了解引力背后的秘密,那么就不能真正地了解自然。以光速变化为假设,以量子力学中基本粒子运动方程为基础,我们可以重建牛顿引力学理论,同时也可以修正其不足。如解释引力红移,引力时钟变慢,引力光线弯曲,水星近日点进动等牛顿引力学解释不了的现象。该引力理论简单、易懂、便于实用。
在历史上有许多复杂难懂和不实用的理论终将被更简单,更易懂,和更实用的理论所取代。简单、易懂、与实用应是所有科学理论追求的标准,否则就成了忽悠大众。一个解不了的方程,一个无法应有的公式,一个很难理解的理论都不是科学家追寻的最终目标。一个简单优美实用的科学理论才是个好的科学理论。当然,所以一切的理论的第一步都必须是接受实践的检验,理论预测必须符合实际观测结果。同时,一个新理论刚刚创立时,也不可能达到一切都完美,历史上还不存在一人可以一步建立一个完美理论。前人的理论,会给后人的理论提供启发借鉴或基础。盲目崇拜前人的理论,会造成停滞不前,而全盘否定又会造成无法继承前人的成果。这两者都是要避免的两个极端。