题目不算难,也不算偏。 == ∠1+∠2 = ∠3+∠4 = 90° cos (∠1+∠2) = cos (∠3+∠4) = cos 90° = 0 cos (∠1+∠2) = cos∠1*cos∠2 - sin∠1*sin∠2 = 0 Therefore, cos∠1*cos∠2 = sin∠1*sin∠2 Dividing (cos∠1*cos∠2) from the both sides, (cos∠1*cos∠2)/(cos∠1*cos∠2) = (sin∠1*sin∠2)/(cos∠1*cos∠2) Or 1 = tan∠1*tan∠2 [1] Also, we can prove the followed result as the same reason 1 = tan∠3*tan∠4 [2] From [1] and [2], tan∠1*tan∠2 = tan∠3*tan∠4. |