设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
没有用的的博客  
科学-政治-反抗-批判-破坏-死亡  
https://blog.creaders.net/u/26161/ > 复制 > 收藏本页
网络日志正文
为什么复杂一点的数学命题无法证明 2024-10-14 00:53:39

我们平时看到的数学定理都是简单的,稍微复杂一点的命题就无法证明。
为什么?
第一,演绎证明某事肯定是这样;
第二,归纳说明某事在实际上是有效的;
第三,溯因仅仅表明某事可能是。
所以溯因是推理中较弱的一种形式。


第四,溯因整理成为一个命题叫做猜想。
第五,我们证明一个数学命题就是一种整体上弱势溯因推理,每一个局部需要强势演绎推理,于是困难就出现了:这超出了人类解决问题的能力!


况且,一个事实可能有多种原因,我们要找到那个必然的原因,并且用演绎推理证明就是它。
好比逆水行舟。
人永远需要理由,解释永远需要解释来解释。数学家用公理把数学推理的无穷退后阻断,防止无休止的循环论证。公理让数学有了合法性。


1,演绎推理,就是从大范畴中找到小范畴的推理;前提与结论是蕴含关系。得出的结论是必然判断。


2,归纳推理,从众多小范畴中找到大范畴的推理;


3,类比推理,在相似的范畴之间找到共性的东西和不同的东西。


我们借助从老命题引向新的命题-从已知引向未知的。


         只有演绎推理形式是必然有效的,因为大范畴的存在,是小范畴存在的充分条件,所以,演绎推理是必然的因果关系推理。


         而归纳和类比推理不是,逻辑上也不会用有效性与否来评价这两类推理,只会说归纳强度和类比的可接受性。所以也叫或然性推理。数学定理不能是或然判断。数学归纳法产生的不是定理,因为归纳无法产生属性。


4,溯因推理是形成一个说明假说过程。它是唯一的引导新思想产生的逻辑操作。归纳只能进行评价,演绎能从假说中推断出必然的推论。
我们讲的溯因逻辑,和我们说的演绎逻辑和归纳逻辑有什么关系?
演绎是从一般到特殊,归纳是从很多特殊到某一个一般。
但是,溯因逻辑是从一个现象或者一个结果,反推出可能存在的原因。


  对溯因形成的猜想是不

可靠的,唯一辩护是从猜想

的建议中能够演绎出一个预

言(假说,数学中叫猜

想),这个预言(猜想)能

够被归纳检验(例如哥德巴

赫猜想:3+3=6,

3+5=8,....,。)。

如果我

们要完全认识和理解这个现

象,必须通过系统性溯因才

能达到(证明)。


溯因要得是一个结果,对溯

因结果的证明要的是一个肯

定的结果。

浏览(2329) (1) 评论(0)
发表评论
我的名片
没有用的
注册日期: 2021-10-10
访问总量: 65,587 次
点击查看我的个人资料
Calendar
最新发布
· 鎏金青铜树145厘米95字铭文
· 楚国见金朱钱
· 为什么复杂一点的数学命题无法证
· 中国科技官员和科学家又开始抢钱
· 太无耻了!中国科学院公然出版反
· 惊人发现:庞加莱猜想居然是一个
· 数学造假获得党和政府的支持:垃
分类目录
【文】
· 鎏金青铜树145厘米95字铭文
· 楚国见金朱钱
· 为什么复杂一点的数学命题无法证
· 中国科技官员和科学家又开始抢钱
· 太无耻了!中国科学院公然出版反
· 数学造假获得党和政府的支持:垃
· 数学造假得到党和政府大力支持:
· 中共中央再一次做出错误选择---
· 成化斗彩除了有【大明成化年制】
· 庞加莱猜想真的被证明了吗
【玉】
· 惊人发现:庞加莱猜想居然是一个
· 黄水晶大清天子行宝印章
· 历史见证:中国科学家集体无耻的
· 中国未来10年获得诺贝尔奖的可能
· 中国科技官员和科学家又开始抢钱
· 丘成桐真的是萨比....证明正质量
· 丘成桐的淫威让中国科学院和中国
· 薛其坤获得最高奖利用媒体恶意炒
· 鸮纹觯39厘米
· 徐辉将军说的对不对
存档目录
2024-11-02 - 2024-11-05
2024-10-08 - 2024-10-14
2024-09-11 - 2024-09-24
2024-08-17 - 2024-08-27
2024-07-02 - 2024-07-30
2024-06-12 - 2024-06-27
2024-05-12 - 2024-05-20
2024-04-29 - 2024-04-29
2023-03-08 - 2023-03-08
2022-09-02 - 2022-09-02
2021-11-01 - 2021-11-01
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.