设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
gugeren的博客  
有则写之,无则空之  
https://blog.creaders.net/u/5804/ > 复制 > 收藏本页
我的名片
gugeren
注册日期: 2012-01-06
访问总量: 3,083,417 次
点击查看我的个人资料
Calendar
我的公告栏
最新发布
· 【RRN】前副总统彭斯现在关塔那
· 【中国观察】川普任命新FBI局长
· 【中国观察】川普上任后5项立即
· 【RRN】独家:特种部队逮捕卡玛
· 【RRN】更多白帽前往边境准备大
· 【中国观察】弗林將軍發出警告
· 【中国观察】马斯克计划推出免费
友好链接
分类目录
【DIY】
· DIY-2:修理漏水的浴缸水龙头
· DIY-1:更换煤气热水锅炉的水
【数学】
· 【圆周率π】与斐波那契数
· 趣味的数学-468
· 趣味的数学-467
· 趣味的数学-466
· 趣味的数学-465
· 趣味的数学-464
· 趣味的数学-463
· 趣味的数学-462
· 趣味的数学-461
· 趣味的数学-460
【美国大学申请】
· 又是申请大学时:申请美国大学心
· 寻找学生人均钱最多的美国高校
· 寻找有钱的美国大学
· 藤校中亚裔学生的比例
· 欢迎B咖学生的美国大学
· 美国大学招生时着重察看申请学生
· 有关申请美国大学过程的书籍和网
· 美国劳工部对2010-2020年劳动力
【杂记】
· 从李密《陈情表》说开去
· 请万维编辑注意博客中的安全问题
· 从《上甘岭》到《黄河绝恋》
· 【转】任正非:华为现在就像一架
· 录鲁迅诗以祭六四惨案卅周年
· 【摘录】中国加入世界贸易组织的
· 如何看美中电视播音员辩论直播
· 【快讯】美中播音员辩论直播
· 当今世界的前10名人口大国
· 什么是“贸易顺差”?
【股票+金融】
· 美FED于周日异常减1%利率
· 如今美国股市遍地黄金
· 浅谈“长期护理”
· 再谈中国政府抛售美国国债的后果
· 对西岸博的回应
· 中国抛售美国国债的后果
· S&P500中高利润率的股票
· 【转】对弈论阐述股市大户赢钱策
· 美国国债
· 【转】有关中国进口粮食的材料-4
【自己文章】
· 【杨】安泽的落选表明每月千刀的
· 【网站】RRN是一个什么网站?
· 【厨房】馒头为何塌陷、萎缩?
· 【书】白左写书揭2020大选舞弊
· 【论】选举作弊=一党专政
· 【趣味问题】为什么至今习近平不
· 邮寄选票的弊端
· 为什么不能选拜登为美国总统?
· 每个人的生命都金贵
· 社会主义不能救美国
【转贴好文章】
· 【RRN】前副总统彭斯现在关塔那
· 【中国观察】川普任命新FBI局长
· 【中国观察】川普上任后5项立即
· 【RRN】独家:特种部队逮捕卡玛
· 【RRN】更多白帽前往边境准备大
· 【中国观察】弗林將軍發出警告
· 【中国观察】马斯克计划推出免费
· 【美国时事通】当被捕杀者成为猎
· 【RRN】白帽逮捕一宾夕法尼亚州
· 【RRN】军方将清洗叛国军官
存档目录
12/01/2024 - 12/31/2024
11/01/2024 - 11/30/2024
10/01/2024 - 10/31/2024
09/01/2024 - 09/30/2024
08/01/2024 - 08/31/2024
07/01/2024 - 07/31/2024
06/01/2024 - 06/30/2024
05/01/2024 - 05/31/2024
04/01/2024 - 04/30/2024
03/01/2024 - 03/31/2024
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
10/01/2023 - 10/31/2023
09/01/2023 - 09/30/2023
08/01/2023 - 08/31/2023
07/01/2023 - 07/31/2023
06/01/2023 - 06/30/2023
05/01/2023 - 05/31/2023
04/01/2023 - 04/30/2023
03/01/2023 - 03/31/2023
02/01/2023 - 02/28/2023
01/01/2023 - 01/31/2023
12/01/2022 - 12/31/2022
11/01/2022 - 11/30/2022
10/01/2022 - 10/31/2022
09/01/2022 - 09/30/2022
08/01/2022 - 08/31/2022
07/01/2022 - 07/31/2022
06/01/2022 - 06/30/2022
05/01/2022 - 05/31/2022
04/01/2022 - 04/30/2022
03/01/2022 - 03/31/2022
02/01/2022 - 02/28/2022
01/01/2022 - 01/31/2022
12/01/2021 - 12/31/2021
11/01/2021 - 11/30/2021
10/01/2021 - 10/31/2021
09/01/2021 - 09/30/2021
08/01/2021 - 08/31/2021
07/01/2021 - 07/31/2021
06/01/2021 - 06/30/2021
05/01/2021 - 05/31/2021
04/01/2021 - 04/30/2021
03/01/2021 - 03/31/2021
02/01/2021 - 02/28/2021
01/01/2021 - 01/31/2021
12/01/2020 - 12/31/2020
11/01/2020 - 11/30/2020
10/01/2020 - 10/31/2020
09/01/2020 - 09/30/2020
08/01/2020 - 08/31/2020
07/01/2020 - 07/31/2020
06/01/2020 - 06/30/2020
05/01/2020 - 05/31/2020
04/01/2020 - 04/30/2020
03/01/2020 - 03/31/2020
02/01/2020 - 02/29/2020
01/01/2020 - 01/31/2020
12/01/2019 - 12/31/2019
11/01/2019 - 11/30/2019
10/01/2019 - 10/31/2019
09/01/2019 - 09/30/2019
08/01/2019 - 08/31/2019
07/01/2019 - 07/31/2019
06/01/2019 - 06/30/2019
05/01/2019 - 05/31/2019
04/01/2019 - 04/30/2019
03/01/2019 - 03/31/2019
02/01/2019 - 02/28/2019
01/01/2019 - 01/31/2019
11/01/2018 - 11/30/2018
08/01/2018 - 08/31/2018
07/01/2018 - 07/31/2018
06/01/2018 - 06/30/2018
05/01/2018 - 05/31/2018
04/01/2018 - 04/30/2018
03/01/2018 - 03/31/2018
02/01/2018 - 02/28/2018
01/01/2018 - 01/31/2018
12/01/2017 - 12/31/2017
11/01/2017 - 11/30/2017
10/01/2017 - 10/31/2017
07/01/2017 - 07/31/2017
06/01/2017 - 06/30/2017
05/01/2017 - 05/31/2017
04/01/2017 - 04/30/2017
03/01/2017 - 03/31/2017
02/01/2017 - 02/28/2017
01/01/2017 - 01/31/2017
12/01/2016 - 12/31/2016
11/01/2016 - 11/30/2016
10/01/2016 - 10/31/2016
09/01/2016 - 09/30/2016
08/01/2016 - 08/31/2016
06/01/2016 - 06/30/2016
05/01/2016 - 05/31/2016
04/01/2016 - 04/30/2016
03/01/2016 - 03/31/2016
02/01/2016 - 02/29/2016
01/01/2016 - 01/31/2016
12/01/2015 - 12/31/2015
11/01/2015 - 11/30/2015
10/01/2015 - 10/31/2015
09/01/2015 - 09/30/2015
08/01/2015 - 08/31/2015
07/01/2015 - 07/31/2015
06/01/2015 - 06/30/2015
05/01/2015 - 05/31/2015
03/01/2015 - 03/31/2015
12/01/2014 - 12/31/2014
06/01/2014 - 06/30/2014
05/01/2014 - 05/31/2014
03/01/2014 - 03/31/2014
02/01/2014 - 02/28/2014
12/01/2013 - 12/31/2013
11/01/2013 - 11/30/2013
10/01/2013 - 10/31/2013
08/01/2013 - 08/31/2013
07/01/2013 - 07/31/2013
06/01/2013 - 06/30/2013
04/01/2013 - 04/30/2013
03/01/2013 - 03/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
12/01/2012 - 12/31/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
07/01/2012 - 07/31/2012
06/01/2012 - 06/30/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
【数学】最漂亮的数学公式
   

【数学】最漂亮的数学公式


1988年,德国著名的科学出版社Springer旗下的数学杂志《Mathematical Intelligencer》让读者评选“最漂亮的数学公式【the Most Beautiful Mathematical Formula Ever】”。


读者选出瑞士数学家欧拉(1707-1783)的著名公式“欧拉恒等式(Euler's identity)”为第一名。


欧拉恒等式 - 公式【1】:


1Euler-Identity.png


顺便说一下,以上这些读者选出的前5个数学公式里,属于欧拉名下的就有3个。


学过高中数学中的复数知识的都知道,可以用指数函数来表示复数 x+iy(i称“虚数单位”,定义为-1的平方根)。


公式【2】:



这用一个直角坐标图可以看得比较清楚:

【图3】【复数-直角坐标】



这里, r = √(x^2 + y^2),称“模(modulus)”,φ是点(x,y)和直角坐标系原点的连线,与x轴之间的夹角。


实际上,公式【2】是由以下被称为“欧拉公式(Euler's formula)”的公式【4】推广而来的:


欧拉公式 - 公式【4】


4Euler's formula.png


欧拉公式可由级数展开或在公式两边分别求导来证明。


当φ = π 时,欧拉公式(公式【4】)即成为欧拉恒等式(公式【1】)。


仔细琢磨一下,可以看出,欧拉恒等式--公式【1】的漂亮之处在于:

1)实现了指数函数和三角函数之间的量的对应;

2)实现了直角坐标系和极坐标系之间的量的对应;

3)实现了实数和复数之间的量的对应;

4)沟通了似乎互不相关的一些数学常数之间的关系:e、π、i、1和0。


无怪著名法国数学家拉普拉斯(Pierre-Simon Laplace,1749-1827)说过:“读读欧拉,读读欧拉,他是所有人的老师。”


欧拉的所有著作至今尚未整理完毕。估计他的著作全部出齐,可达84卷之多。它们涉及了数学的绝大多数领域,以及物理学和天文学等领域。欧拉的许多工作都是开创性的。


==

相关链接

Euler's identity

https://en.wikipedia.org/wiki/Euler%27s_identity


Euler's formula

http://mathworld.wolfram.com/EulerFormula.html

https://en.wikipedia.org/wiki/Euler%27s_formula


Leonhard Euler

https://en.wikipedia.org/wiki/Leonhard_Euler



 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.