趣味的数学-353
数列的前n项是
10^(1/11), 10^(2/11), 10^(3/11), ..., 10^(n/11),
求它们的乘积超过100,000时n的最小值。
再来一题说难不难、说不难也难的。
所求乘积为 10^(1/11)*10^(2/11)*……*10^(n/11)
= 10^(1/11 + 2/11 + ……+n/11)
= 10^{1/11*[(1+n)/2]n}
= 10^[n(n+1)/22]
> 10^5
即 n(n+1)/22 > 5
所以,满足此不等式的 最小的 n = 11
这题比上一题稍微难一点。