设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
gugeren的博客  
有则写之,无则空之  
https://blog.creaders.net/u/5804/ > 复制 > 收藏本页
我的名片
gugeren
注册日期: 2012-01-06
访问总量: 3,062,996 次
点击查看我的个人资料
Calendar
我的公告栏
最新发布
· 【中国观察】马斯克计划推出免费
· 【美国时事通】当被捕杀者成为猎
· 【RRN】白帽逮捕一宾夕法尼亚州
· 【RRN】军方将清洗叛国军官
· 【RRN】FBI局长Wray被控叛国罪但
· 【美国时事通】川普胜选后,她要
· 【RRN】海军陆战队逮捕马约卡斯
友好链接
分类目录
【DIY】
· DIY-2:修理漏水的浴缸水龙头
· DIY-1:更换煤气热水锅炉的水
【数学】
· 【圆周率π】与斐波那契数
· 趣味的数学-468
· 趣味的数学-467
· 趣味的数学-466
· 趣味的数学-465
· 趣味的数学-464
· 趣味的数学-463
· 趣味的数学-462
· 趣味的数学-461
· 趣味的数学-460
【美国大学申请】
· 又是申请大学时:申请美国大学心
· 寻找学生人均钱最多的美国高校
· 寻找有钱的美国大学
· 藤校中亚裔学生的比例
· 欢迎B咖学生的美国大学
· 美国大学招生时着重察看申请学生
· 有关申请美国大学过程的书籍和网
· 美国劳工部对2010-2020年劳动力
【杂记】
· 从李密《陈情表》说开去
· 请万维编辑注意博客中的安全问题
· 从《上甘岭》到《黄河绝恋》
· 【转】任正非:华为现在就像一架
· 录鲁迅诗以祭六四惨案卅周年
· 【摘录】中国加入世界贸易组织的
· 如何看美中电视播音员辩论直播
· 【快讯】美中播音员辩论直播
· 当今世界的前10名人口大国
· 什么是“贸易顺差”?
【股票+金融】
· 美FED于周日异常减1%利率
· 如今美国股市遍地黄金
· 浅谈“长期护理”
· 再谈中国政府抛售美国国债的后果
· 对西岸博的回应
· 中国抛售美国国债的后果
· S&P500中高利润率的股票
· 【转】对弈论阐述股市大户赢钱策
· 美国国债
· 【转】有关中国进口粮食的材料-4
【自己文章】
· 【杨】安泽的落选表明每月千刀的
· 【网站】RRN是一个什么网站?
· 【厨房】馒头为何塌陷、萎缩?
· 【书】白左写书揭2020大选舞弊
· 【论】选举作弊=一党专政
· 【趣味问题】为什么至今习近平不
· 邮寄选票的弊端
· 为什么不能选拜登为美国总统?
· 每个人的生命都金贵
· 社会主义不能救美国
【转贴好文章】
· 【中国观察】马斯克计划推出免费
· 【美国时事通】当被捕杀者成为猎
· 【RRN】白帽逮捕一宾夕法尼亚州
· 【RRN】军方将清洗叛国军官
· 【RRN】FBI局长Wray被控叛国罪但
· 【美国时事通】川普胜选后,她要
· 【RRN】海军陆战队逮捕马约卡斯
· 【美国时事通】911,J6等真相将
· 【RRN】杰克·史密斯被判叛国罪
· 【中国观察】弗林将军向美国共产
存档目录
11/01/2024 - 11/30/2024
10/01/2024 - 10/31/2024
09/01/2024 - 09/30/2024
08/01/2024 - 08/31/2024
07/01/2024 - 07/31/2024
06/01/2024 - 06/30/2024
05/01/2024 - 05/31/2024
04/01/2024 - 04/30/2024
03/01/2024 - 03/31/2024
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
10/01/2023 - 10/31/2023
09/01/2023 - 09/30/2023
08/01/2023 - 08/31/2023
07/01/2023 - 07/31/2023
06/01/2023 - 06/30/2023
05/01/2023 - 05/31/2023
04/01/2023 - 04/30/2023
03/01/2023 - 03/31/2023
02/01/2023 - 02/28/2023
01/01/2023 - 01/31/2023
12/01/2022 - 12/31/2022
11/01/2022 - 11/30/2022
10/01/2022 - 10/31/2022
09/01/2022 - 09/30/2022
08/01/2022 - 08/31/2022
07/01/2022 - 07/31/2022
06/01/2022 - 06/30/2022
05/01/2022 - 05/31/2022
04/01/2022 - 04/30/2022
03/01/2022 - 03/31/2022
02/01/2022 - 02/28/2022
01/01/2022 - 01/31/2022
12/01/2021 - 12/31/2021
11/01/2021 - 11/30/2021
10/01/2021 - 10/31/2021
09/01/2021 - 09/30/2021
08/01/2021 - 08/31/2021
07/01/2021 - 07/31/2021
06/01/2021 - 06/30/2021
05/01/2021 - 05/31/2021
04/01/2021 - 04/30/2021
03/01/2021 - 03/31/2021
02/01/2021 - 02/28/2021
01/01/2021 - 01/31/2021
12/01/2020 - 12/31/2020
11/01/2020 - 11/30/2020
10/01/2020 - 10/31/2020
09/01/2020 - 09/30/2020
08/01/2020 - 08/31/2020
07/01/2020 - 07/31/2020
06/01/2020 - 06/30/2020
05/01/2020 - 05/31/2020
04/01/2020 - 04/30/2020
03/01/2020 - 03/31/2020
02/01/2020 - 02/29/2020
01/01/2020 - 01/31/2020
12/01/2019 - 12/31/2019
11/01/2019 - 11/30/2019
10/01/2019 - 10/31/2019
09/01/2019 - 09/30/2019
08/01/2019 - 08/31/2019
07/01/2019 - 07/31/2019
06/01/2019 - 06/30/2019
05/01/2019 - 05/31/2019
04/01/2019 - 04/30/2019
03/01/2019 - 03/31/2019
02/01/2019 - 02/28/2019
01/01/2019 - 01/31/2019
11/01/2018 - 11/30/2018
08/01/2018 - 08/31/2018
07/01/2018 - 07/31/2018
06/01/2018 - 06/30/2018
05/01/2018 - 05/31/2018
04/01/2018 - 04/30/2018
03/01/2018 - 03/31/2018
02/01/2018 - 02/28/2018
01/01/2018 - 01/31/2018
12/01/2017 - 12/31/2017
11/01/2017 - 11/30/2017
10/01/2017 - 10/31/2017
07/01/2017 - 07/31/2017
06/01/2017 - 06/30/2017
05/01/2017 - 05/31/2017
04/01/2017 - 04/30/2017
03/01/2017 - 03/31/2017
02/01/2017 - 02/28/2017
01/01/2017 - 01/31/2017
12/01/2016 - 12/31/2016
11/01/2016 - 11/30/2016
10/01/2016 - 10/31/2016
09/01/2016 - 09/30/2016
08/01/2016 - 08/31/2016
06/01/2016 - 06/30/2016
05/01/2016 - 05/31/2016
04/01/2016 - 04/30/2016
03/01/2016 - 03/31/2016
02/01/2016 - 02/29/2016
01/01/2016 - 01/31/2016
12/01/2015 - 12/31/2015
11/01/2015 - 11/30/2015
10/01/2015 - 10/31/2015
09/01/2015 - 09/30/2015
08/01/2015 - 08/31/2015
07/01/2015 - 07/31/2015
06/01/2015 - 06/30/2015
05/01/2015 - 05/31/2015
03/01/2015 - 03/31/2015
12/01/2014 - 12/31/2014
06/01/2014 - 06/30/2014
05/01/2014 - 05/31/2014
03/01/2014 - 03/31/2014
02/01/2014 - 02/28/2014
12/01/2013 - 12/31/2013
11/01/2013 - 11/30/2013
10/01/2013 - 10/31/2013
08/01/2013 - 08/31/2013
07/01/2013 - 07/31/2013
06/01/2013 - 06/30/2013
04/01/2013 - 04/30/2013
03/01/2013 - 03/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
12/01/2012 - 12/31/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
07/01/2012 - 07/31/2012
06/01/2012 - 06/30/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
趣味的数学 - 13【数字模式】
   

趣味的数学 - 13【数字模式】


1】观察以下各式

3^2 + 4^2 = 5^2;

5^2 + 12^2 = 13^2;

7^2 + 24^2 = 25^2;

9^2 + 40^2 = 41^2.

根据这些例子,确定其一般的规律,并加以证明。

【以上这些3元数组(3,4,5)、(5,12,13)、(7,24,25)和(9,40,41)即是所谓的“勾股弦数组”。】

【转引自Edward J. Barbeau等编著的“Five hundred Mathematical Challenges”第4题。】


2】观察以下各式

1^2 = (1x2x3)/6;

1^2 + 3^2 = (3x4x5)/6;

1^2 + 3^2 + 5^2= (5x6x7)/6;

根据这些例子,确定其一般的规律,并加以证明。

【转引自Edward J. Barbeau等编著的“Five hundred Mathematical Challenges”第41题。】


3】观察以下各式

1/1 + 1/3 = 4/3,4^2 + 3^2 = 5^2;

1/3 + 1/5 = 8/15,8^2 + 15^2 = 17^2;

1/5 + 1/7 = 12/35,12^2 + 35^2 = 37^2.

根据这些例子,确定其一般的规律,并加以证明。

【转引自Edward J. Barbeau等编著的“Five hundred Mathematical Challenges”第98题。】


4】设

a(1) = 2^2 + 3^2 + 6^2;

a(2) = 3^2 + 4^2 + 12^2;

a(3) = 4^2 + 5^2 + 20^2;

...。

给出以上等式的一般形式,并使得a(n)总是一个完全平方数。

【转引自Edward J. Barbeau等编著的“Five hundred Mathematical Challenges”第226题。】


5】观察以下各式

1^2 = 1;

2 + 3 + 4 = 3^2;

3 + 4 + 5 + 6 + 7 = 5^2;

4 + 5 + 6 + 7 + 8 + 9 + 10 = 7^2.

根据这些例子,确定其一般的规律,并加以证明。

【转引自Edward J. Barbeau等编著的“Five hundred Mathematical Challenges”第310题。】


 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.