if A=2B, then C=180-3B since a/sinA = b/sinB = c/sinC set b/sinB = x, then a=xsin2B, b=xsinB, c=xsin3B b(b+c) = x^2*sinB(sinB +sin3B) sinB(sinB +sin3B) = sinB(sinB +sin2B*cosB + cos2B * sinB) = sinB[(sinB (1+cos2B) +sin2B*cosB)] = (sinB)^2 *2 * (cosB)^2 + sin2B * sinB*cosB = 1/2 (2sinBcosB)^2 + 1/2 sin2B*sin2B = (sin2B)^2 a/x^2 = b(b+c)/x^2 |