Let’s use Q(1,2,3,..,2^n) to represent 各个正整数1, 2, 3, ..., 2^n 的最大的奇因数的和. So Q(2^0) = 1 Q(1,2^1) = 2 Q(1,2,3, 2^2) = 6 and Q(1,2,3,..,2^n) = Q(1,,3,5,..,(2^n-1)) + Q(2,4,..,2^n) Q(1,3,5,..,(2^n-1)) = 1+3+5+…+2^n-1 = 2^(2(n-1)) since 2,4,6,…2^n = 2(1,2,3,…, 2^(n-1)), Q(2,4,..,2^n) = Q(1,2,3,..,2^(n-1)) So, Q(1,2,3,..,2^n) = 2^(2(n-1))+ Q(1,2,3,..,2^(n-1)) = 2^(2(n-1))+ 2^(2(n-2)) +….+1 |