w = cos(40)+i*sin(40), 所以有,w^9 = 1; 而且,|w^k| = 1, k = 1,2,.... 现在考察多项式 f(w) = w+2w^2+...+9w^9 = (w+w^2+...+w^9) + (w^2+...+w^9)+...+ (w^8+w^9) + w^9 = w*(1-w^9)/(1-x) + w^2*(1-w^8)/(1-x) + ... + w^8*(1-w^2)/(1-w) + w^9 = [(w-w^10) + (w^2-w^10) + ... + (w^8 - w^10) ]/(1-w) +w^9 = [(w+w^2+...+w^8)-8*w]/(1-w) + 1 (因为w^9 = 1, 所以w^10 = w) = [(w+w^2+...+w^8) - 8w + (1-w)]/(1-w) = [(1+w+w^2+...+w^8) - 9w]/(1-w) 因为1+w+...+w^8 = (1-w^9)/(1-w) = 0 (记住,w^9 = 1) 所以 f(w) = - 9w/(1-w), 而1/|f(w)| = |1-w|/|9w| 这里|9w| = 9*|w| = 9; 这是因为|w| = 1 而|1-w| = |1-cos40-i*sin40| = ((1-cos(40))^2 + sin(20)^2)^0.5 = [(1-2*cos(40)+cos(40)^2)+sin(40)^2]^0.5 = [2(1-cos(40))]^0.5 而1-cos(40) = 2*sin(20)^2 所以|1-w| = 2*sin(20) 1/|f(w)| = 2*sin(20)/9 花了好长时间,终于搞出个大概了。 |