首先对华政委表示一下敬意。这回坦诚他自己没搞清楚被绕进去了。说话有担当。对就是对,错就是错。有的右派朋友说他说被绕进去了还属于认错不彻底。我则不这么认为。为啥呐。因为概率里很多东西就是很绕人。比如我家沙嫂。人聪明无比但是冲她话讲她上大学时就怕概率。因为总觉得概率那个东西你怎么说好像都有理。什么都是似是而非。什么都有点道理可又哪儿不对劲。所以政委说被绕进去了我理解。应该是属实的。
那么概率到底容易不容易理解呐?我以为只要你把几个弯子转过来了。概率就是件挺容易的事情了。
之所以有概率论的出现。就是因为人们在日常生活中遇到的些不确定事件。古典概率就是从掷骰子投硬币这些赌博活动发展起来的。现代概率则是通过把概率某些原则的公理化。将概率转换成了通过对测度函数的研究从而使之严格化并成为了数学中一个严谨的分支。这个说起来那就扯远了。就不再赘述。同时我在这里就某些概念的理解方面就不企图在有些东西的陈述上搞得太严谨而注重词藻了。这个就是为了科普用。有些专业人士就不用太挑剔了。
现在说第一个弯子。什么是概率或者说几率。要说明这点就先明白什么是样本空间和随机事件。举个例子吧。扔一个硬币。它的统共可能结果就无非是正面反面。或者0,1,或者什么你自己愿意定义的东西吧。总之这个样本空间有两个样本。那么什么是概率呐?我建议你这样理解。概率就是这每一个样本所固有的一个数字0和1间的个数字。这个数字表明了当你在从这个样本空间任取一个结果时这个样本发生的几率。这个概率有什么特别属性呐?就是每一个独立样本的几率加起来是1. 如果把几个样本和起来那么这个集合的概率就是这些独立样本的概率之和。而如果有两个集合相交,那么并集的集合如何计算。交集的集合如何计算等都是有规定的。这里就不详述了。总之这个概率我们就把它当作一个就如同质量似的固有的东西。那么一个随机变量到底在产生结果时出现怎样的结果就是被这个固有的东西所有属性所决定的。
那么具体到最近的讨论。投硬币很多次。比如说1000次。我们讨论的样本空间是则是从0 到 1000 的所有整数。而对于每一个数字。它发生概率通过二项分布就可以计算出来。
在这里。我问你个问题。数字 500(也就是说正面出现500次) 产生的概率说明的是什么? 是一个硬币正面还是反面的概率么?
答案。不是。这个数字表明的是你如果撒1000次硬币,出现五百次正面的概率。直觉的表示就是如果你撒一千次当作一次实验而重复足够多的话,那么一个实验中五百次正面的可能性就是嘎子和真空以及右撇计算及模拟的那个数字了。
所以说要搞明白什么是概率就一定要明白什么是样本空间。这个是第一个弯子。
第二个弯子。什么是极限。
要提大数定律就必须要先理解什么叫极限。有同学说极限不就是当N趋于无穷时的极限值么。可是什么叫做N趋于无穷。无穷是个什么东东。你是看不见摸不到的。你凭什么就说它趋于无穷时就趋于什么值了?数学上是怎么表明的。记得当初兔子大谈无限如何等等。我就说你根本没搞明白无限这个概念在数学里是通过什么来完备的。结果这回看他回来问的些个问题可见没什么长进。
其实在数学里。无限的概念永远是通过有限来表达的。采用的方式就是通过描述精度的不断改进这个过程。学数学最常用的句话就是任给一个精度值。如果我能找到一个足够大的N使得任何一个这个N以后的数字都与我们认定的那个极限值的误差少于这个精度的话那么这个序列就是趋向于这个精度值的。
所以有重要一点就是一个极限值并不意味着你会真的等于这个值。最明显的例子就是1/N,你让N趋于无穷。这个数列极限是0,但是你任挑一点它都不是零,无论N多大。然而随便你要求什么精度。我肯定可以找到一个N值使得从这个N以后的所以值都在这个精度以内。
这个,就是极限的真谛。
那么我现在就是说大数定律吧。其实大数定律还又分强大数和弱大数定律。我这里就说说伯努利的弱大数定律吧。
如果我用简单直观的话来描述的话就是。任给一个精度e,你如果掷硬币次数足够多的话。那么出现正面的比例和固有概率值的差距小于e的概率就几乎为一了。
记住这里
不是一个定数。同样是一个随机变量。
那么具体到我们说的撒一千次硬币时。这个变量可能是501/1000, 或者是499/1000,等等。大数定律说的是如果你给我一个精度。比如说 0.1吧。那么我能保证我会找到一个足够大的N值。比如说一万次。这样在我扔超过一万次硬币时。出现的正面比例在49.9%和50.1%之间概率会趋近于一。(这里我sloppy一点了。严格的陈述就没必要了)。
所以说现在回过头来看看。怎么理解大数定律。比如说我扔一万次硬币。那么正面的百分比我可以说几乎肯定是在49.9%和50.1%之间(设若p是0.5)。这也就是为何在实际中你扔一万次硬币几乎总是看到正面的比例在这个精度中。
那你会问了。这个怎么和关于 一万次中出现五千次的概率小于一千次中五百次的现象说得通呐?这个就是要理解在这个0.1的精度中。你其实还有很多样本的。就比如一万次中从出现正面4990到5010次正面都是属于这个范畴。也就是有21个可能性。所以注重点在于这个精度本身是界定了一个独立事件之集合的概率趋近于一,而不是一个独立事件的概率趋于一。在这个集合里,每单个的概率都是趋于零的。但是他们的集合却是趋于一的。这样一想的话你就应该理解了。
|