著名的Fitch可知性悖论(Fitch's paradox of knowability)被称为是认识逻辑学(Epistemic Logic)的一个基本悖论[1]。按照斯坦福哲学百科全书上的介绍[2], Fitch最初的结论为:“目前不知的真理都是不可知的(the existence of truths in fact unknown entails the existence of truths necessarily unknown)”,用符号逻辑表达出来为:
∃p(p∧¬Kp)⊢∃p(p∧¬◊Kp)
但是,现在流行的所谓的Fitch可知性悖论的实际表达为:“如果存在有可知的真理,那么所有的真理都是已知的。(if any truth can be known then it follows that every truth is in fact known)”。
其实,学界也确实有人出来指出Fitch的数学推导过程中所用的假设的错误,因而否认Fitch的结论是一个悖论(Brogaard and Salerno 2019)。但迄今为止,没有一个用来否认Fitch结论的数学推导论证得到了学界的公认,而学界讨论的焦点并非指出我在上面提到的将Fitch的结论作为悖论的可笑性,而是聚集在如何可以找出一个更合理地表达真理的可能性的数学模型,从而能避免Fitch悖论。因此,他们实际上与Fitch有着共同的出发点,那就是认为可以用数学的表达式来精准地描述人们在生活中对真理的表达,而其中的一个隐含的意思则是可以用数学的形式逻辑来完全表达哲学的问题。
所谓的孔多塞悖论说的是当一个社群对三个或以上的选项的顺序进行两两对比投票来选出公众的偏好顺序时,可能因出现循环性选择而无法确定结果。比如,要公众对A,B,C三个选项进行投票,如果我们用大于号(>)来表示“优于”的话,那么可能会出现多数人选择A > B (选择A>B的人多于选择B>A的人),多数人选择B>C,同样也是多数人选择C>A。因此,人们无法通过多数人选择A>B和B>C得出多数人选择A>B>C的结论。
(英文原文:The Possibility Theorem shows that, if no prior assumptions are made about the nature of individual orderings, there is no method of voting which will remove the paradox of voting discussed in Part I, neither plurality voting nor any scheme of proportional representation, no matter how complicated. Similarly, the market mechanism does not create a rational social choice.)
从上世纪50年代初至今的70年中阿罗悖论一直享誉世界社会学和经济学领域,著名的斯坦福哲学百科全书网站在相关的介绍文章[7]中对阿罗和他的不可能定理给出这样的评价:“不可能定理本身为当代社会选择理论设定了许多议程。阿罗还是一名研究生时就做到了这一点。 1972年,由于他的贡献,他获得了诺贝尔经济学奖。(英语原文:The impossibility theorem itself set much of the agenda for contemporary social choice theory. Arrow accomplished this while still a graduate student. In 1972, he received the Nobel Prize in economics for his contributions.)”
(英文原文:Definition 3: By a "social welfare function" will be meant a process or rule which, for each set of individual orderings R1,. . . ,Rn for alternative social states (one ordering for each individual), states a corresponding social ordering of alternative social states, R.)
(英文原文:If there are at least three alternatives among which the members of the society are free to order in any way, then every social welfare function satisfying Conditions 2 and 3 and yielding a social ordering satisfying Axioms I and II must be either imposed or dictatorial.)
(英文原文:Condition 2: If an alternative social state x rises or does not fall in the ordering of each individual without any other change in those orderings and if x was preferred to another alternative y before the change in individual orderings. then x is still preferred to y. )
(英文原文:Condition 3: Let R1, R2, and R1', R2' be two sets of individual orderings. If, for both individuals i and for all x and y in a given set of alternatives S, xRiy if and only if xRi'y, then the social choice made from S is the same whether the individual orderings are R1, R2, or R1', R2'.)
其中,xRiy的意思是在Ri中x不会排在y后面。阿罗将这条件3称作独立于无关变量的条件(Independence of irrelevant alternatives),他的解释是:公众对于x和y的排序的选择不会受到其它选择项的变化的影响。他特别用一个不满足条件3的例子来对条件3进行解释,在那个例子中共有四个选项x,y,z,w,和三个选民。投票结果的顺序是x,z, y,w;但如果把y从选项中除去,则x和z成为并列第一,因此不满足条件3。
而上述的可能性定理中所说的公理I和II如下:
公理I:对于所有x和y,xRy或yRx。
(英文原文:Axiom I: For all x and y, either xRy or yRx. )
公理II:对于所有x,y和z,xRy和yRz表示xRz。
(英文原文:Axiom II: For all x, y, and z, xRy and yRz imply xRz. )
[2] Brogaard, Berit and Salerno, Joe. "Fitch’s Paradox of Knowability", The Stanford Encyclopedia of Philosophy (Fall 2019 Edition), Edward N. Zalta (ed.), URL =
[4] Arrow, Kenneth J. (1950). "A Difficulty in the Concept of Social Welfare" (PDF). Journal of Political Economy. 58 (4): 328–346. doi:10.1086/256963. JSTOR 1828886. S2CID 13923619. Archived from the original (PDF) on 2011-07-20.