设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
 
天蓉的博客  
随笔、小说、诗词、科普。 “真和美,是科学不变的精髓;爱与死,是文学永恒的主题……”  
我的名片
天蓉
注册日期: 2011-09-18
访问总量: 1,183,094 次
点击查看我的个人资料
Calendar
我的公告栏
最新发布
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
· 费马大定理-欧拉猜想
· 费马大定理-这个证明包你懂!
· 费马大定理-救了他的命
友好链接
分类目录
【作品目录】
· 《走近混沌》目录
· 《走近量子》目录
· 《诗谜画谜》目录
· 《傻博士的初恋》目录
· 《美国房客》目录
· 《隐身惊魂记》目录
· 《白雪之恋》:目录
【科普-走近混沌】
· 《走近混沌》-25-27-全文完
· 《走近混沌》-24-孤立子的故事
· 《走近混沌》-23-混沌到有序
· 《走近混沌》-22-再回魔鬼聚合物
· 《走近混沌》-21-萬變之不變
· 《走近混沌》-20-混沌魔鬼不穩定
· 《走近混沌》-19-混沌魔鬼的誕生
· 《走近混沌》-18-生態繁衍和混沌
· 《走近混沌》-17-混沌遊戲
· 《走近混沌》-16-三體問題及趣聞
【科普-走近量子】
· 走近量子(19)量子隐形传输(二
· 走近量子(18)量子隐形传输(一
· 走近量子(17)量子计算机
· 走近量子(16)GHZ定理-繼續
· 走近量子(15)GHZ定理
· 走近量子(14)qubit和费曼
· 走近量子(13)从纠缠态到qubit
· 走近量子(12)GHZ登场
· 走近量子(11)埃斯派克特的实验
· 走近量子(10)最後的判决
【谜语集锦3】
· 留下一串謎(詩謎+畫謎)- 44
· 留下一串謎(詩謎+畫謎)- 43
· 留下一串谜(诗谜+画谜)- 42
· 留下一串谜(诗谜+画谜)- 41
· 留下一串谜(诗谜+画谜)- 40
· 留下一串谜(诗谜+画谜)- 39
· 留下一串谜(诗谜+画谜)- 38
· 留下一串谜(诗谜+画谜)- 37
· 留下一串谜(诗谜+画谜)- 36
· 留下一串谜(诗谜+画谜)- 35
【谜语集锦2】
· 留下一串谜(诗谜+画谜)- 30
· 留下一串谜(诗谜+画谜)- 29
· 留下一串谜(诗谜+画谜)- 28
· 留下一串谜(诗谜+画谜)- 27
· 留下一串谜(诗谜+画谜)- 26
· 留下一串谜(诗谜+画谜)- 25
· 留下一串谜(诗谜+画谜)- 24
· 留下一串谜(诗谜+画谜)- 23
· 留下一串谜(诗谜+画谜)- 22
· 留下一串谜(诗谜+画谜)- 21
【谜语集锦1】
· 留下一串谜(诗谜+画谜)- 20
· 留下一串谜(诗谜+画谜)- 19
· 留下一串谜(诗谜+画谜)- 18
· 留下一串谜(诗谜+画谜)- 17
· 留下一串谜(诗谜+画谜)- 16
· 留下一串谜(诗谜+画谜)- 15
· 留下一串谜(诗谜+画谜)- 14
· 留下一串谜(诗谜+画谜)- 13
· 留下一串谜(诗谜+画谜)- 12
· 留下一串谜(诗谜+画谜)- 11
【谜语集锦】
· 留下一串谜(诗谜+画谜)- 10
· 留下一串谜(诗谜+画谜)- 9
· 留下一串谜(诗谜+画谜)- 8
· 留下一串谜(诗谜+画谜)- 7
· 留下一串谜(诗谜+画谜)- 6
· 留下一串谜(诗谜+画谜)- 5
· 留下一串谜(诗谜+画谜)- 4
· 留下一串谜(诗谜+画谜)- 3
· 留下一串谜(诗谜+画谜)- 2
· 留下一串谜(诗谜+画谜)- 1
【傻博士的初恋46-50】
· 傻博士的初恋-50-尾声
· 傻博士的初恋-49-水落石出
· 傻博士的初恋-48-谋杀案?
· 傻博士的初恋-47-当个女侦探
· 傻博士的初恋-46-跟踪依娃
【傻博士的初恋:41-45】
· 傻博士的初恋-45-疑惑
· 傻博士的初恋-44-分手?
· 傻博士的初恋-43-闯荡哈林区
· 傻博士的初恋-42-平安夜(2)
· 傻博士的初恋-41-平安夜(1)
【傻博士的初恋36-40】
· 傻博士的初恋-40-回家
· 傻博士的初恋-39-感恩节(2)
· 傻博士的初恋-38-感恩节(1)
· 傻博士的初恋-37-古怪的量子
· 傻博士的初恋-36-罗德的忠告
【傻博士的初恋31-35】
· 傻博士的初恋-35-万圣节(2)
· 傻博士的初恋-34-万圣节(1)
· 傻博士的初恋-33-工作狂
· 傻博士的初恋-32-如此先进企业
· 傻博士的初恋-31-强词夺理
【“傻”博士的初恋:26-30】
· 傻博士的初恋-30-大金失踪
· 傻博士的初恋-29-恋爱的学问
· 傻博士的初恋-28-911(2)
· 傻博士的初恋-27-911(1)
· 傻博士的初恋-26-贾杨金
【“傻”博士的初恋:21-25】
· 傻博士的初恋-25-人脑和电脑
· 傻博士的初恋-24-硅谷看房子
· 傻博士的初恋-23-经济泡沫
· 傻博士的初恋-22-明娜来访
· 傻博士的初恋 -21- 亲密接触
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -20- 搬家
· 傻博士的初恋 -19- 罗德的故事
· 傻博士的初恋 -18- 糊涂有理
· 傻博士的初恋 -17- 糊涂博士
· 傻博士的初恋 -16- 疯涨的股票
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -15- “生日快乐
· 傻博士的初恋 -14- 过生日
· 傻博士的初恋13- 父母来访
· 傻博士的初恋-12- “大袍子”博
· 傻博士的初恋-11- 有惊无险
【“傻”博士的初恋:6-10】
· 傻博士的初恋-10- 太浩湖之旅
· 傻博士的初恋-9- 简单和复杂
· 傻博士的初恋-8- 笑阿姨
· 傻博士的初恋-7- 情人节
· 傻博士的初恋-6-大忙人
【“傻”博士的初恋:1-5】
· 傻博士的初恋-5-“萨沙”和“妮
· 傻博士的初恋-4-合作伙伴?
· 傻博士的初恋-3-第一次约会
· 傻博士的初恋-2-棕榈大道
· 傻博士的初恋-1-初遇
· 傻博士的初恋:引子
【《美国房客》尾声】
· 《美国房客》- 35 经悠悠数月,
【《美国房客》生死游戏】
· 《美国房客》- 34 感生命有限,
· 《美国房客》- 33 知祸福相依,
· 《美国房客》- 32 忆德州旧识,
· 《美国房客》- 31 急自强有危,
· 《美国房客》- 30 烧藏宝真图,
· 《美国房客》- 29 欲引蛇出洞,
· 《美国房客》- 28 映院中人影,
· 《美国房客》- 27 破车祸真相,
· 《美国房客》- 26 听教授感慨,
· 《美国房客》- 25 记梦中影像,
【《美国房客》游子百态】
· 《美国房客》- 15 忆往事成烟,
· 《美国房客》- 14 解诗词秘密,
· 《美国房客》- 13 气弟弟不肖,
· 《美国房客》- 12 喜赴美寻梦,
· 《美国房客》- 11 厌名利薰心,
· 《美国房客》- 10 记车祸当日,
· 《美国房客》- 9 述加州之行,触
· 《美国房客》- 8 疑泰州宝藏,惑
· 《美国房客》- 7 用键盘交流,集
· 《美国房客》- 6 叙文革旧事,传
【《美国房客》楔子】
· 《美国房客》楔子-2 人物诗谜
· 《美国房客》楔子-1 一则新闻
【长篇悬疑小说《美国房客》】
【《隐身惊魂记》-独立节惊魂】
· 独立节惊魂-尾声
· 独立节惊魂-82-隐蛇现形白宫惊魂
· 独立节惊魂-81-遥控实现杀人游戏
· 独立节惊魂-80-毒蛇消失总监着急
· 独立节惊魂-79- 欢乐华府严阵以
· 独立节惊魂-78- 阳光谷城小虎遇
· 独立节惊魂-77-节日凌晨无人能眠
· 独立节惊魂-76-高人驾车出手相救
【《隐身惊魂记》-矽谷追逐】
· 矽谷追逐-75-隐身男孩被人跟踪
· 矽谷追逐-74-红木城中隐人现形
· 矽谷追逐-73-隐人出没捉狭添乱
· 矽谷追逐-72-戈尔自杀拉曼被捕
· 矽谷追逐-71-身陷囹圄处境危急
· 矽谷追逐-70-月黑风高事故不断
· 矽谷追逐-69-野狼活动毒蛇突现
· 矽谷追逐-68-天灾可怕人心奸诈
· 矽谷追逐-67-狡猾政客阴谋小人
· 矽谷追逐-66-精心策划设置圈套
【《隐身惊魂记》-阴谋政治】
· 阴谋政治-61-驶离华府何去何从
· 阴谋政治-60-警商勾结顾客遭殃
· 阴谋政治-59-欲破阴谋逃避逮捕
· 阴谋政治-58-隐侠计划云游湾区
· 阴谋政治-57-别墅取车拉曼落网
· 阴谋政治-56-流浪小子守株待兔
· 阴谋政治-55-上司策划逮捕迈克
· 阴谋政治-54-两月前的重大案件
· 阴谋政治-53-分析案情迷雾重重
· 阴谋政治-52-跟踪绅士疑点多多
【长篇科幻小说《隐身惊魂记》】
· 脑电波之谜-40-急中生智无辜遇难
· 脑电波之谜-39-藏身遁形纽约历险
· 脑电波之谜-38-情况复杂小虎不见
· 脑电波之谜-37-人性兽性互纠互缠
· 脑电波之谜-36-隐人胡闹大使剧院
· 脑电波之谜-35-历历在目十年之前
· 脑电波之谜-34-拉曼失踪线索中断
· 脑电波之谜-33-切身体会隐身之趣
· 《隐身惊魂记》目录
· 脑电波之谜-32 别墅忽见往日同学
【随笔】
【科普】
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
· 费马大定理-欧拉猜想
· 费马大定理-这个证明包你懂!
· 费马大定理-救了他的命
· “费马数”-猜想
· 猫咪怎样启发了人工神经网络的诞
· 量子纠缠:“鬼魅般的超距作用”
【诗词】
· 《露珠》
· 《小花》
· 《激流》
· 《团聚》
· 《三叠泉》
· 《咏荷》
【小说】
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:1-56
· 《白雪之恋》:1-55
· 《白雪之恋》:1-54
· 《白雪之恋》:1-53
· 《白雪之恋》:1-52
· 《白雪之恋》:1-51
存档目录
11/01/2024 - 11/30/2024
10/01/2024 - 10/31/2024
09/01/2024 - 09/30/2024
08/01/2024 - 08/31/2024
06/01/2024 - 06/30/2024
05/01/2024 - 05/31/2024
04/01/2024 - 04/30/2024
03/01/2024 - 03/31/2024
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
06/01/2023 - 06/30/2023
04/01/2023 - 04/30/2023
11/01/2022 - 11/30/2022
10/01/2022 - 10/31/2022
09/01/2022 - 09/30/2022
07/01/2022 - 07/31/2022
06/01/2022 - 06/30/2022
05/01/2022 - 05/31/2022
04/01/2022 - 04/30/2022
03/01/2022 - 03/31/2022
02/01/2022 - 02/28/2022
01/01/2022 - 01/31/2022
12/01/2021 - 12/31/2021
07/01/2013 - 07/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
12/01/2012 - 12/31/2012
11/01/2012 - 11/30/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
08/01/2012 - 08/31/2012
07/01/2012 - 07/31/2012
06/01/2012 - 06/30/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
12/01/2011 - 12/31/2011
11/01/2011 - 11/30/2011
10/01/2011 - 10/31/2011
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
费马大定理-椭圆曲线和“群”
   

介绍谷山-志村猜想之前,还需要加两篇必要的基础知识,此篇介绍的是对椭圆曲线如何定义“群”。

1:谷山-志村猜想

怀尔斯证明费马大定理有三大要素:椭圆曲线、模形式、谷山-志村猜想。谷山-志村猜想已经被证明了,因此现在一般称其为“模性定理”(Modularity Theorem)。模性定理讲的是椭圆曲线和模形式之间的关系,这种关系是建立在第四大要素:“伽罗瓦群表示”的基础上。伽罗瓦(Galois1811-1832)是一位早逝的法国天才数学家,他在证明一元五次方程没有根式解时创造了群的概念。因此,在介绍谷山-志村猜想之前,此篇我们首先回过头再看椭圆曲线1,看看如何在它上面引入“群”。

在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构。如果这个二元运算是可交换的,则称之为“阿贝尔群”。

实数域的椭圆曲线比较直观,但事实上椭圆曲线可以被定义在任意域K上。例如在图1左边的椭圆曲线,被画成了一个甜甜圈的模样,这是因为椭圆曲线在复数定义域上本质上等同于环面,而画在实数域上的椭圆曲线(红色)只是环面的一个投影。这意味着,从拓扑上讲,椭圆曲线可以被看作一个甜甜圈形状的表面,即数域K上的亏格为1的曲线。其中曲线上的点可以映射到环面上的点,在这种映射下,椭圆曲线的群结构与环面的群结构一致。谷山-志村猜想与上面说法有类似之处,但映射的对象变了,谷山-志村猜想说的是椭圆曲线与“模形式”的一致。

1,有理数域上的椭圆曲线

为了方便研究群表示,首先在椭圆曲线(y^2=x^3+Ax+B)上的点与点之间定义加法运算。

2:椭圆曲线上的加法

2显示了椭圆曲线加法的几何操作方法,左图表示一般的标准情况:假设P1P2是曲线上的两个点,从这两点连线与椭圆曲线的交点,再向对称轴引垂线,对面的那个点就是相加之后的结果P3。图2中图,表示相同的点(P1=P2)时的加法:先作切线,再从交点作垂线。右图则是连线只有两个交点的特殊情形,结果记为0,表示无穷远点。此外,基于相同点的加法,可以定义标量乘法运算。

由以上定义的加法运算,可构成一个加法群:所有椭圆曲线上的点,是这个群里的元素;点P的逆元是点P相对x坐标的对称点;单位元是无穷远点0;加法满足结合律。以上几点满足群的定义,并且这个加法群是阿贝尔群(元素之间的运算次序可交换)。

因为目的是解决数论问题,所以我们最感兴趣的是有理点数域上的椭圆曲线,有理点的意思是:xy,及方程的系数AB都是有理数,即可表示为两整数相除m/nn不为零)形式的数。

可以证明,在以上加法运算下,结果仍然是有理点,因此有理数域Q上椭圆曲线E(Q) 的群,与实数域的类似。以此为基础,群结构可扩展到椭圆曲线的其它域上。

2,有限域上的椭圆曲线

椭圆曲线E(Q)的有理数解的数目看起来是无穷多的,但关于这点,法国数学家庞加莱(Poincaré1854-1912)在1901年有一个猜想,1922年被莫德尔(Mordell1888-1972)证明了。这个后来被称为莫德尔-韦伊的定理说:“椭圆曲线的有理数解,可以由一个有限的阿贝尔群生成”。该定理成为丢番图几何和阿贝尔群的一个基础定理。因此,E(Q) 实际上是有限生成的阿贝尔群。换句话说,存在有限多个点,使得QE(Q)都可以写成如下线性组合:

Q = a1P1+ a2P2+...+anPn

得到有限群的一个常用方法是对椭圆曲线做pmod p约化,这也是数论中一种重要的技巧。通过p约化,可以把整数域Z的问题约化到有限域Fp

例如,对椭圆曲线:y^2=4x^3-53568x-4321728,作mod 5 约化。考虑点(4, 1),它不在原来的椭圆曲线上,但是满足约化后的方程。

3:有限域上的椭圆曲线

3的右图给了一个模p=17的约化例子2。约化后的椭圆曲线定义在有限域FpF17)上,这个有限集合Fp的个数r称为椭圆曲线的秩。

在有限域Fp上的椭圆曲线与原来的椭圆曲线并无直接关系。实际上,只是有限个点的(封闭)集合,并非原来那种连续“曲线”。因此,这个有限群上的加法定义也需要做一些适当的修改。其中的群元素与整数的乘法(如图3右图所示的2*G3*G等)也需修正。因为离散点的“切线”已经失去了意义。对此,本文不详细说明了,读者可阅读参考资料3

有关秩与椭圆曲线的有理数解之关系,是重要的研究课题,与BSDBirch and Swinnerton-Dyer)猜想有关。该猜想属于世界七大数学难题,被克莱数学研究所列为千禧年大奖难题之一,至今未解。此外,这个问题也和至今未解的同余数问题有关,此是另一话题,在此不表。

3,复数格点上的椭圆曲线

复数上的椭圆曲线可以看作是一个复环面,它是通过取复平面并用格(复平面的离散加法子群)“修正”而获得的。

4:复数域的椭圆曲线

当将椭圆曲线视为圆环时,基本区域是复平面上的平行四边形,它表示圆环上的所有不同点,图4。椭圆曲线上的点通常由魏尔斯特拉斯  椭圆函数参数化,这是一个与格相关的复解析函数。椭圆曲线等同于魏尔斯特拉斯形式(Weierstrass form)。

(下一篇继续)

参考资料:

1Wikipedir-Elliptic curve https://en.wikipedia.org/wiki/Elliptic_curve

2https://codeahoy.com/learn/practicalcryptography/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc/

3https://andrea.corbellini.name/2015/05/23/elliptic-curve-cryptography-finite-fields-and-discrete-logarithms/

 


 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.