設萬維讀者為首頁 萬維讀者網 -- 全球華人的精神家園 廣告服務 聯繫我們 關於萬維
 
首  頁 新  聞 視  頻 博  客 論  壇 分類廣告 購  物
搜索>> 發表日誌 控制面板 個人相冊 給我留言
幫助 退出
 
天蓉的博客  
隨筆、小說、詩詞、科普。 “真和美,是科學不變的精髓;愛與死,是文學永恆的主題……”  
網絡日誌正文
走近量子(7)貝爾不等式 2012-02-02 10:39:51

1963-1964年,在长期供职於欧洲核子中心(CERN)後,约翰·贝尔有機会到美国斯坦福大学访问一年。北加州田园式的风光,四季宜人的氣候,附近农莊的葡萄美酒,離得不远的黄金海滩,加之斯坦福大学既寧静深沉,又宽松开放的学术氣氛。这美好的一切,孕育了贝尔的灵感,启发了他对EPR佯谬及隐变量理论的深刻思考。

贝尔开始认真考察量子力学能否用局域的隐变量理论来解释。贝尔认为,量子论表面上获得了成功,但其理论基础仍然可能是片面的,如同瞎子摸象,管中窥豹,没有看到更全面、更深层的东西。在量子论的地下深处,可能有一个隐身人在作怪∶那就是隐变量。

根據爱因斯坦的想法,在EPR论文中提到的,从一个大粒子分裂成的两个粒子的自旋状态,虽然看起来是随機的,但却可能是在两粒子分離的那一刻(或是之前)就决定好了的。打个比喻说,如同两个同卵双胞胎,他们的基因情况早就决定了,无论後来他(她)们相距多远,总在某些特定的情形下,会作出一些驚人相似的选择,使人误认为他们有第六感,能超距離地心灵相通。但是实际上,是有一串遗传指令隐藏在它们的基因中,暗地裡指挥着他们的行动,一旦我们找出了这些指令,双胞胎的‘心灵感应’就不再神秘,不再需要用所谓‘非局域’的超距作用来解释了。

尽管粒子自旋是个很深奥的量子力学概念,並无经典对应物,但粗略地说,我们可以用三维空间的一段矢量来表示粒子的自旋。比如,对EPR中的纠缠粒子对AB来说,它们的自旋矢量总是处於相反的方向,如下图中所示的红色矢量和蓝色矢量。这两个红蓝自旋矢量,在三维空间中可以随機地取各種方向,假设这種随機性是来自於某个未知的隐变量L。为简单起见,我们假设L只有八个離散的数值,L=12345678,如下图所示,分别对应於三维空间直角坐标系的八个卦限。

 

由於AB的纠缠性,图中的红矢和蓝矢总是应该指向相反的方向,也就是说,红矢方向確定了,蓝矢方向也就確定了。因此,我们只需要考虑A粒子的自旋矢量(红矢)的空间取向就够了。假设红矢出现在八个卦限中的概率分别为n1,n2┅n8。由於红矢的位置在8个卦限中必居其一,因此我们有∶n1+n2+n3+n4+n5+n6+n7+n8 = 1

现在,我们列出一个表,描述AB的自旋矢量在3维空间可能出现的8種情况。下图中的左半部分列出了在这些可能情况下,自旋矢量在xyz方向的符号∶

 

既然AB二粒子系统形成纠缠态,互为关联,我们便定义幾个关联函数,用数学语言来更準確地描述这種关联的程度。比如,我们可以如此来定义Pxx(L)∶观察x方向红矢的符号,和x方向蓝矢的符号,如果两个符号相同,函数Pxx(L)的值就为+1,否则,函数Pxx(L)的值就为-1。我们从上表左边列出的红矢蓝矢的符号不难看出,Pxx(L)8个数值都是-1。然後,我们使用类似的原则,可以定义其他的关联函数。比如说,Pxz(L),是x方向红矢符号,與z方向蓝矢符号的关联,等等。

在上图中的右半部分,我们列出了Pxx(L),以及Pxz(L)Pzy(L)Pxy(L)的数值。

现在,贝尔继续按照经典的思维方式想下去∶我们的小孙悟空AB蹦出石头缝时,它们的两个自旋看起来是随機的,但实际上是按照上面的列表互相关联。然後,他们朝相反方向拼命跑。经过了一段时间之後,两个小孙悟空分别被如来佛和观音菩萨抓住了。如来和观音分别对AB的自旋方向进行测量。因为L是不可知的隐变量,因此,只有关联函数的平均值才有意义。根 上面表中的数值,我们不难预测一下这幾个关联函数被测量到的平均值∶

Pxx = -n1-n2-n3-n4-n5-n6-n7-n8 = -1

Pxz = -n1+n2+n3-n4+n5-n6-n7+n8

Pzy = -n1-n2+n3+n4+n5+n6-n7-n8

Pxy = -n1+n2-n3+n4-n5+n6-n7+n8

让我们直观地理解一下,这幾个关联函数是什麽意思呢?可以这样来看∶Pxx代表的是AB都从x方向观测时,它们的符号的平均相关性。因为纠缠的原因,AB的符号总是相反的,所以同被在x方向观察时,它们的平均相关性是-1,即反相关。类似的,Pxz代表的是从x方向观测A,从z方向观测B时,它们符号的平均相关性。如果自旋在每个方向的概率都一样,即∶n1=n2=┅n8=1/8的话,我们会得到Pxz0。对PzyPxy,也得到相同的结论。换言之,当概率均等时,如在相同方向测量AB的自旋,应该反相关;而如果在不同方向测量AB的自旋,平均来说应该不相关。

我们可以用一个通俗的比喻来加深对上文的理解∶两个双胞胎AB,出生後从未见过面,互相完全不知对方情况。一天,两人分别来到纽约和北京。假设双胞胎诚实不撒谎。当纽约和北京的警察问他们同样的问题∶“你是哥哥吗?”,如果A回答“是”,B一定是回答“不是”,反之亦然。对这个问题,他们不需要互通消息,回答一定是反相关的,因为问题的答案是出生时就因出生的顺序而决定了的(这可相仿於Pxx=-1的情况)。但是,如果纽约警察问A∶“两人中你更高吗?”,而北京警察问B∶“你跑得更快吗?”,按照我们的经典常识,两人出生後互不相识,从未比较过彼此的高度,也从未一起赛跑。所以,他们的回答就应该不会相关了(这可相仿於Pxz=0的情况)。

现在再回到简单的数学∶我们在PxzPzyPxy的表达式上,做点小运算。首先,将PxzPzy相减再取绝对值後,可以得到∶

|Pxz-Pzy| = 2|n2-n4-n6+n8| = 2|(n2+n8)-(n4+n6)|                  1

然後,利用有关绝对值的不等式|x-y|<=|x|+|y|,我们有∶

2|(n2+n8)-(n4+n6)| <= 2(n2+n4+n6+n8) =

(n1+n2+n3+n4+n5+n6+n7+n8)+(-n1+n2-n3+n4-n5+n6-n7+n8) = 1+Pxy      2

这样,从(1)和(2),我们得到一个不等式∶

|Pxz-Pzy|<= 1+Pxy                                                3

这就是著名的贝尔不等式。上述不等式是贝尔应用经典概率的思维方法得出的结论。因此,它可以说是在经典的框架下,这三个关联函数之间要满足的约束条件。也就是說,经典的孙悟空不可以胡作非为,它的行动是被师傅唐僧的紧箍咒制约了的,得满足贝尔不等式!

但是,如果是量子世界的量子孙悟空,情况又将如何呢?当然只有两種情形∶如果量子孙悟空也遵循贝尔不等式,那就好了,萬事大吉!爱因斯坦的预言实现了。量子论应该是满足‘局域实在论’的,量子孙悟空表现诡異一些,只不过是因为有某些我们不知道的隐变量而已,那不着急,将来我们总能挖掘出这些隐变量的。第二種情况∶那就是量子孙悟空不遵循贝尔不等式,贝尔用他的‘贝尔定理’来表述这種情形∶“任何局域隐变量理论都不可能重现量子力学的全部统计性预言”。如果是这样的话,世界好像有点乱套!

不过没关系,贝尔说,重要的是,这幾个关联函数是在实验室中可能测量到的物理量。这样,我的不等式就为判定EPR和量子力学谁对谁错提供了一个实验验证的方法。

那好,理论物理学家们说,我们就暂时停止耍嘴皮,让将来的实验结果来说话吧。

上一篇∶幫倒忙的貝爾

下一篇∶糾纏態及實驗

瀏覽(2759) (0) 評論(9)
發表評論
文章評論
作者:King 留言時間:2012-02-02 18:55:48
我有幾篇幾篇關於Bell態及量子隱形傳態(Quanum Teleportion)的研究論文(pdf文件),想貼在萬維我的博客上,但可能方法不對,一直貼不上。但發表評論可以顯示。

現在幾篇論文已發布在科學網我的博客上

http://blog.sciencenet.cn/u/guanky

因內容與現在討論的問題稍有關係,藉此介紹一下。

歡迎瀏覽,批評指正。
回復 | 0
作者:King 留言時間:2012-02-02 14:56:10
天蓉:

看來,你好像還沒明確回答這一關鍵問題:兩個自旋不同的電子能否在三維空間看作是線性相關而且方向相反的矢量?

in English:
It seems that you have not replied my problem: If can the two different spin states of electron be treated as such two vectors in 3-dimensional space, that they are linear dependent, and one in in the positive direction and the other one is in the negative direction?

建議:我們都說漢語,在中文網討論儘量用中文。發表英語論文另當別論。
回復 | 0
作者:天蓉 留言時間:2012-02-02 14:04:56
King,

Spin operator is similar to orbital angular momentum operator. They both are measurable physical quantities. Spin cannot take continuous values, as you said, for electron, it can only take 1 / 2 and -1 / 2, two values, but can still be observed in the three-dimensional space.

They are two orthogonal vectors in the Hilbert space, which is different from physical three-dimensional space.
回復 | 0
作者:Rabbit 留言時間:2012-02-02 13:52:07
硃換瑉
乱码ぃ穝写鈎蛤и对泊
回復 | 0
作者:天蓉 留言時間:2012-02-02 13:50:58
If the results violate Bell's inequality, the denial of the locality of quantum mechanics. But it seems not enough to deny the non-local hidden variables.
回復 | 0
作者:逍遙津 留言時間:2012-02-02 13:42:42
樓主的上面的回帖是"天書",在我的屏幕上無法辯識,只好代答湊數,不知合意否。

貝爾不等式在經典力學中成立,而在量子力學中不成立。

實驗表明:如果一個隱變量理論不改變量子力學的統計預言,就一定會違背定域性原理,迫使人們接受一種非因果關係的超光速效應。

換句話說,如果一個隱變量理論遵循定域性原理,就一定會改變量子力學的統計預言。

再換句話說,任何定域的隱變量理論不可能重複量子力學的全部統計預言。

再再換句話說,愛因斯坦"錯",玻爾"對",但玻爾自己也不明白自已在說神馬東西。

哈哈哈....只有兔子的"絕學"知道底細!
回復 | 0
作者:King 留言時間:2012-02-02 13:28:57
有個問題:

將量子的兩個不同自旋態比作沿同一測量方向上的正負兩個矢量是否恰當?

因為量子力學中,它們是同一自共軛自旋算符的對應於兩個不同特徵值(對電
子,這兩個特徵值分別是+1/2 和-1/2;對光子,這兩個特徵值分別是+1 和-1)
的兩個特徵矢量,這兩個自旋態恰恰是正交的,不在同一方向上。

另外,量子力學還沒有定義一特徵矢量(態)的正負方向,因為對應其負向的矢量,仍是同一特徵值的特徵矢量,不會變成另一特徵值的特徵矢量。

不知作者自己是如何考慮的?
回復 | 0
作者:榕城老應 留言時間:2012-02-02 13:10:13
很精彩!學習了隱變量推出Bell不等式。所以確定論能解釋符合Bell不等式的隨機現象和糾纏。

滿足Bell不等式的隨機糾纏現象是不是都能找出隱變量來?

等着看什麼是局部域和解釋Bell定理。
回復 | 0
作者:Rabbit 留言時間:2012-02-02 11:03:18
可以簡單地講,貝爾不等式的原因是“隱形量”還沒被測出/發現的結果嗎?如果不對,您怎樣總結?
回復 | 0
我的名片
天蓉
註冊日期: 2011-09-18
訪問總量: 1,364,557 次
點擊查看我的個人資料
Calendar
最新發布
· 都江堰科普
· 費馬大定理-最後一步
· 費馬大定理-鋪平道路
· 費馬大定理-橢圓函數
· 費馬大定理-橢圓曲線和“群”
· 費馬大定理-模形式
· 費馬大定理-橢圓曲線
分類目錄
【作品目錄】
· 《走近混沌》目錄
· 《走近量子》目錄
· 《詩謎畫謎》目錄
· 《傻博士的初戀》目錄
· 《美國房客》目錄
· 《隱身驚魂記》目錄
· 《白雪之戀》:目錄
【科普-走近混沌】
· 《走近混沌》-25-27-全文完
· 《走近混沌》-24-孤立子的故事
· 《走近混沌》-23-混沌到有序
· 《走近混沌》-22-再回魔鬼聚合物
· 《走近混沌》-21-萬變之不變
· 《走近混沌》-20-混沌魔鬼不穩定
· 《走近混沌》-19-混沌魔鬼的誕生
· 《走近混沌》-18-生態繁衍和混沌
· 《走近混沌》-17-混沌遊戲
· 《走近混沌》-16-三體問題及趣聞
【科普-走近量子】
· 走近量子(19)量子隱形傳輸(二
· 走近量子(18)量子隱形傳輸(一
· 走近量子(17)量子計算機
· 走近量子(16)GHZ定理-繼續
· 走近量子(15)GHZ定理
· 走近量子(14)qubit和費曼
· 走近量子(13)從糾纏態到qubit
· 走近量子(12)GHZ登場
· 走近量子(11)埃斯派克特的實驗
· 走近量子(10)最後的判決
【謎語集錦3】
· 留下一串謎(詩謎+畫謎)- 44
· 留下一串謎(詩謎+畫謎)- 43
· 留下一串謎(詩謎+畫謎)- 42
· 留下一串謎(詩謎+畫謎)- 41
· 留下一串謎(詩謎+畫謎)- 40
· 留下一串謎(詩謎+畫謎)- 39
· 留下一串謎(詩謎+畫謎)- 38
· 留下一串謎(詩謎+畫謎)- 37
· 留下一串謎(詩謎+畫謎)- 36
· 留下一串謎(詩謎+畫謎)- 35
【謎語集錦2】
· 留下一串謎(詩謎+畫謎)- 30
· 留下一串謎(詩謎+畫謎)- 29
· 留下一串謎(詩謎+畫謎)- 28
· 留下一串謎(詩謎+畫謎)- 27
· 留下一串謎(詩謎+畫謎)- 26
· 留下一串謎(詩謎+畫謎)- 25
· 留下一串謎(詩謎+畫謎)- 24
· 留下一串謎(詩謎+畫謎)- 23
· 留下一串謎(詩謎+畫謎)- 22
· 留下一串謎(詩謎+畫謎)- 21
【謎語集錦1】
· 留下一串謎(詩謎+畫謎)- 20
· 留下一串謎(詩謎+畫謎)- 19
· 留下一串謎(詩謎+畫謎)- 18
· 留下一串謎(詩謎+畫謎)- 17
· 留下一串謎(詩謎+畫謎)- 16
· 留下一串謎(詩謎+畫謎)- 15
· 留下一串謎(詩謎+畫謎)- 14
· 留下一串謎(詩謎+畫謎)- 13
· 留下一串謎(詩謎+畫謎)- 12
· 留下一串謎(詩謎+畫謎)- 11
【謎語集錦】
· 留下一串謎(詩謎+畫謎)- 10
· 留下一串謎(詩謎+畫謎)- 9
· 留下一串謎(詩謎+畫謎)- 8
· 留下一串謎(詩謎+畫謎)- 7
· 留下一串謎(詩謎+畫謎)- 6
· 留下一串謎(詩謎+畫謎)- 5
· 留下一串謎(詩謎+畫謎)- 4
· 留下一串謎(詩謎+畫謎)- 3
· 留下一串謎(詩謎+畫謎)- 2
· 留下一串謎(詩謎+畫謎)- 1
【傻博士的初戀46-50】
· 傻博士的初戀-50-尾聲
· 傻博士的初戀-49-水落石出
· 傻博士的初戀-48-謀殺案?
· 傻博士的初戀-47-當個女偵探
· 傻博士的初戀-46-跟蹤依娃
【傻博士的初戀:41-45】
· 傻博士的初戀-45-疑惑
· 傻博士的初戀-44-分手?
· 傻博士的初戀-43-闖蕩哈林區
· 傻博士的初戀-42-平安夜(2)
· 傻博士的初戀-41-平安夜(1)
【傻博士的初戀36-40】
· 傻博士的初戀-40-回家
· 傻博士的初戀-39-感恩節(2)
· 傻博士的初戀-38-感恩節(1)
· 傻博士的初戀-37-古怪的量子
· 傻博士的初戀-36-羅德的忠告
【傻博士的初戀31-35】
· 傻博士的初戀-35-萬聖節(2)
· 傻博士的初戀-34-萬聖節(1)
· 傻博士的初戀-33-工作狂
· 傻博士的初戀-32-如此先進企業
· 傻博士的初戀-31-強詞奪理
【“傻”博士的初戀:26-30】
· 傻博士的初戀-30-大金失蹤
· 傻博士的初戀-29-戀愛的學問
· 傻博士的初戀-28-911(2)
· 傻博士的初戀-27-911(1)
· 傻博士的初戀-26-賈楊金
【“傻”博士的初戀:21-25】
· 傻博士的初戀-25-人腦和電腦
· 傻博士的初戀-24-硅谷看房子
· 傻博士的初戀-23-經濟泡沫
· 傻博士的初戀-22-明娜來訪
· 傻博士的初戀 -21- 親密接觸
【“傻”博士的初戀:11-15】
· 傻博士的初戀 -20- 搬家
· 傻博士的初戀 -19- 羅德的故事
· 傻博士的初戀 -18- 糊塗有理
· 傻博士的初戀 -17- 糊塗博士
· 傻博士的初戀 -16- 瘋漲的股票
【“傻”博士的初戀:11-15】
· 傻博士的初戀 -15- “生日快樂!
· 傻博士的初戀 -14- 過生日
· 傻博士的初戀13- 父母來訪
· 傻博士的初戀-12- “大袍子”博士
· 傻博士的初戀-11- 有驚無險
【“傻”博士的初戀:6-10】
· 傻博士的初戀-10- 太浩湖之旅
· 傻博士的初戀-9- 簡單和複雜
· 傻博士的初戀-8- 笑阿姨
· 傻博士的初戀-7- 情人節
· 傻博士的初戀-6-大忙人
【“傻”博士的初戀:1-5】
· 傻博士的初戀-5-“薩沙”和“妮妮”
· 傻博士的初戀-4-合作夥伴?
· 傻博士的初戀-3-第一次約會
· 傻博士的初戀-2-棕櫚大道
· 傻博士的初戀-1-初遇
· 傻博士的初戀:引子
【《美國房客》尾聲】
· 《美國房客》- 35 經悠悠數月,
【《美國房客》生死遊戲】
· 《美國房客》- 34 感生命有限,
· 《美國房客》- 33 知禍福相依,
· 《美國房客》- 32 憶德州舊識,
· 《美國房客》- 31 急自強有危,
· 《美國房客》- 30 燒藏寶真圖,
· 《美國房客》- 29 欲引蛇出洞,
· 《美國房客》- 28 映院中人影,
· 《美國房客》- 27 破車禍真相,
· 《美國房客》- 26 聽教授感慨,
· 《美國房客》- 25 記夢中影像,
【《美國房客》遊子百態】
· 《美國房客》- 15 憶往事成煙,
· 《美國房客》- 14 解詩詞秘密,
· 《美國房客》- 13 氣弟弟不肖,
· 《美國房客》- 12 喜赴美尋夢,
· 《美國房客》- 11 厭名利薰心,
· 《美國房客》- 10 記車禍當日,
· 《美國房客》- 9 述加州之行,觸
· 《美國房客》- 8 疑泰州寶藏,惑
· 《美國房客》- 7 用鍵盤交流,集
· 《美國房客》- 6 敘文革舊事,傳
【《美國房客》楔子】
· 《美國房客》楔子-2 人物詩謎
· 《美國房客》楔子-1 一則新聞
【長篇懸疑小說《美國房客》】
【《隱身驚魂記》-獨立節驚魂】
· 獨立節驚魂-尾聲
· 獨立節驚魂-82-隱蛇現形白宮驚魂
· 獨立節驚魂-81-遙控實現殺人遊戲
· 獨立節驚魂-80-毒蛇消失總監着急
· 獨立節驚魂-79- 歡樂華府嚴陣以
· 獨立節驚魂-78- 陽光谷城小虎遇
· 獨立節驚魂-77-節日凌晨無人能眠
· 獨立節驚魂-76-高人駕車出手相救
【《隱身驚魂記》-矽谷追逐】
· 矽谷追逐-75-隱身男孩被人跟蹤
· 矽谷追逐-74-紅木城中隱人現形
· 矽谷追逐-73-隱人出沒捉狹添亂
· 矽谷追逐-72-戈爾自殺拉曼被捕
· 矽谷追逐-71-身陷囹圄處境危急
· 矽谷追逐-70-月黑風高事故不斷
· 矽谷追逐-69-野狼活動毒蛇突現
· 矽谷追逐-68-天災可怕人心奸詐
· 矽谷追逐-67-狡猾政客陰謀小人
· 矽谷追逐-66-精心策劃設置圈套
【《隱身驚魂記》-陰謀政治】
· 陰謀政治-61-駛離華府何去何從
· 陰謀政治-60-警商勾結顧客遭殃
· 陰謀政治-59-欲破陰謀逃避逮捕
· 陰謀政治-58-隱俠計劃雲遊灣區
· 陰謀政治-57-別墅取車拉曼落網
· 陰謀政治-56-流浪小子守株待兔
· 陰謀政治-55-上司策劃逮捕邁克
· 陰謀政治-54-兩月前的重大案件
· 陰謀政治-53-分析案情迷霧重重
· 陰謀政治-52-跟蹤紳士疑點多多
【長篇科幻小說《隱身驚魂記》】
· 腦電波之謎-40-急中生智無辜遇難
· 腦電波之謎-39-藏身遁形紐約歷險
· 腦電波之謎-38-情況複雜小虎不見
· 腦電波之謎-37-人性獸性互糾互纏
· 腦電波之謎-36-隱人胡鬧大使劇院
· 腦電波之謎-35-歷歷在目十年之前
· 腦電波之謎-34-拉曼失蹤線索中斷
· 腦電波之謎-33-切身體會隱身之趣
· 《隱身驚魂記》目錄
· 腦電波之謎-32 別墅忽見往日同學
【隨筆】
【科普】
· 都江堰科普
· 費馬大定理-最後一步
· 費馬大定理-鋪平道路
· 費馬大定理-橢圓函數
· 費馬大定理-橢圓曲線和“群”
· 費馬大定理-模形式
· 費馬大定理-橢圓曲線
· 費馬大定理-數學公主
· 費馬大定理-歐拉猜想
· 費馬大定理-這個證明包你懂!
【詩詞】
· 《露珠》
· 《小花》
· 《激流》
· 《團聚》
· 《三疊泉》
· 《詠荷》
【小說】
· 《白雪之戀》:2-《二十六年後…
· 《白雪之戀》:2-《二十六年後…
· 《白雪之戀》:2-《二十六年後…
· 《白雪之戀》:2-《二十六年後…
· 《白雪之戀》:1-56
· 《白雪之戀》:1-55
· 《白雪之戀》:1-54
· 《白雪之戀》:1-53
· 《白雪之戀》:1-52
· 《白雪之戀》:1-51
存檔目錄
2025-01-12 - 2025-01-12
2024-12-03 - 2024-12-06
2024-11-17 - 2024-11-23
2024-10-16 - 2024-10-28
2024-09-07 - 2024-09-07
2024-08-27 - 2024-08-30
2024-06-04 - 2024-06-26
2024-05-01 - 2024-05-29
2024-04-03 - 2024-04-23
2024-03-07 - 2024-03-28
2024-02-12 - 2024-02-20
2024-01-08 - 2024-01-23
2023-12-09 - 2023-12-19
2023-11-08 - 2023-11-27
2023-06-10 - 2023-06-10
2023-04-08 - 2023-04-08
2022-11-07 - 2022-11-07
2022-10-09 - 2022-10-11
2022-09-12 - 2022-09-12
2022-07-09 - 2022-07-09
2022-06-08 - 2022-06-08
2022-05-26 - 2022-05-26
2022-04-25 - 2022-04-25
2022-03-10 - 2022-03-30
2022-02-03 - 2022-02-28
2022-01-07 - 2022-01-17
2021-12-16 - 2021-12-29
2013-07-08 - 2013-07-08
2013-02-07 - 2013-02-07
2013-01-05 - 2013-01-26
2012-12-05 - 2012-12-26
2012-11-04 - 2012-11-25
2012-10-01 - 2012-10-31
2012-09-02 - 2012-09-27
2012-08-01 - 2012-08-30
2012-07-03 - 2012-07-31
2012-06-02 - 2012-06-30
2012-05-01 - 2012-05-31
2012-04-01 - 2012-04-30
2012-03-01 - 2012-03-31
2012-02-01 - 2012-02-29
2012-01-01 - 2012-01-30
2011-12-01 - 2011-12-31
2011-11-01 - 2011-11-30
2011-10-19 - 2011-10-31
 
關於本站 | 廣告服務 | 聯繫我們 | 招聘信息 | 網站導航 | 隱私保護
Copyright (C) 1998-2025. Creaders.NET. All Rights Reserved.