设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
 
天蓉的博客  
随笔、小说、诗词、科普。 “真和美,是科学不变的精髓;爱与死,是文学永恒的主题……”  
网络日志正文
这个世界到底有多大? 2011-10-26 15:10:45

这个世界到底有多大?一类人一类回答:

 

地理学家说:地球的半径是6370公里,赤道的周长大约四万公里,这就是我们的世界;天文学家说:世界比地球大多了!地球只是宇宙中的沧海一粟。就拿太阳系为例子吧,太阳系的半径大概50个天文单位左右,1个天文单位就大约是1.5亿公里,这个距离,连宇宙最快的光速都要跑8分钟。这还只是太阳系。你说说看,我们的整个宇宙世界有多大?

 

刚才是科学家们的说法。可是,信佛的人说:佛曰“一人一世界,一树一菩提”。世界吗,自己去理解啦,你觉得它有多大就有多大。

 

闲话少说,言归正传。我们要问的是:我们的网络世界到底有多大?

 

谈到网络世界,也得具体指出,是哪一个网络世界?就象大自然到处遍布了各种树木各种森林一样,我们的文明社会也充满了、交织着各种网络:实在的或抽象的、有形的或无形的、技术的或人文的、历史的或现代的。无形的网,诸如社会中的国家之间、社团之间、家庭之间、人际之间的关系网,错综复杂,扑朔迷离。有形的网,诸如电力网、电话网、交通网、运输网,琳琅满目,比比皆是。

 

在这篇文章中,我们要探索的就是错综复杂,扑朔迷离人际关系网。

 

首先,让我们给网络的大小下一个定义。任何网络都可以抽象为一个由许多顶点和连线组成的‘图’,十八世纪伟大的数学家欧拉从研究七桥问题而创造的图论,便成为构造网络世界数学模型最适用的数学工具。所以,网络的大小,就定义为所对应的图的大小

 

图论中的‘图’,是由许多顶点和连线构成的。具体到人际关系网来说,每个人就是图中的一个顶点,人与人之间的关系,比如:认识或不认识,就构成图中顶点之间的连线。

 

人类社会中的各种社团组织,小到家庭、朋友圈、教会、公司、学校,大如党派、政府、国家,都是人际关系网的具体社会体现。随着计算机通信技术的进步,互联网的发展,更有了各种虚拟世界的人际关系网,诸如emailfacebooktwitter,等等。

 

如何定义图的大小?顶点数和连线数并不等同于图的大小。几何中,可以用点和点之间的最大距离,也就是‘直径’,来描述几何体的‘大小’。因此,要定义图的大小,首先需要在图中引进‘距离’,或‘直径’的概念。

 

人际关系网的直径,定义为任意两个人之间,最多要经过多少个关系(连线数),才能互相到达?比如,我们考虑一个有200个人的教堂,如果这个教堂的每个人都互相认识,意味着任意两人之间都有1条连线互相到达。因此,这个教堂的‘人际关系网直径’是1。我们再考虑一个100人的小公司,分成部门一和部门二,分别有经理AB。公司员工之间互相认识的不多,两个经理AB互相认识,且分别认识自己部门的所有员工。这种情形下,在每个部门内部,员工之间互相到达,需要通过自己的部门经理,也就是:经过2条连线。而部门一的员工C,要到达部门二的员工D,则需通过3层关系:C<->AA<->BB<->D,三条连线。因此,这个公司的‘人际关系网直径’是3

 

从刚才的两个例子不难看出,如此所定义的关系网的大小,与关系网的人数是无关的。从人数来看,上例中200人的教堂大于100人的公司;而从关系网来看,公司的直径为3,大于教堂直径1。所以,关系网的直径所度量的,不是人的多少,而是人与人之间关系紧密的程度。

 

虚拟网络世界的人际关系网,诸如emailfacebooktwitter等等,所对应的是

具有成千上万个顶点和连线的巨大的‘图’,这种图已经与二百多年欧拉所研究的图有了本质的区别:这些巨大的图是随机的、统计的、算法的。举万维网为例。把万维网中的每个网页看作是图的顶点,网页之间的联系是图的连线。那么,万维网所构成的图有近十亿个顶点和几十亿条连线。并且,图的顶点和连线都不是固定的,而是随机变化的。

 

对一个如此巨大又复杂的随机图,我们却仍然可以用刚才的方式来定义它的大小,只不过,现在的数学量都应该是统计意义上的,所以,任何量的前面,都应隐含着‘平均’二字。再以万维网为例,我们说:万维网的大小(直径)定义为从一个网页到另外任意一个网页,鼠标最多需要点击次数的平均值。出人意料的是,根据研究结果,万维网的直径并非如万维网的网页数目那样,是一个巨大的天文数字,而是大约等于19。也就是说:从万维网的一个网頁,要連到任意另一个网頁,平均最多需按19次鼠标。

 

万维网描述的是网页之间的关系。再回到有关人际关系网的话题,我们以近几年非常热门的社交网站:比如‘facebook’和‘twitter’为例。从图论的观点来看,这两个社交网络有什么不同呢?在我们刚才所考虑的教堂和公司的例子中,图的连线并无方向性。也就是说,人们的关系只是一种简单 ‘互相认识’ 的关系。如此而构成的图,称之为‘简单图’。如果我们还进一步考虑‘我认识奥巴马,奥巴马不认识我’之类的情况的话,就得在连线上画上单向或双向的箭头,这样构成的图,称之为‘有向图’。 在facebook中,‘朋友’的意义是相互的,即:“如果你是我的朋友,那么我也是你的朋友。”因而,它构成的‘图’中的连线没有方向,是简单图;而twitter所构成的‘图’则是有向图。这两个社交网站都足够大,社会学家们便从它们提供的资料,来研究人类大社会人际关系网的大小。

 

根据2011年世界人口统计,人的数目大约70亿。如果还将死去的人都包括在内的话,应该是几百个亿的数量级。这样一个人类大社会构成的巨大的人际关系网,它的‘直径’会有多大呢?研究结果更是出人意料,它的直径只等于6!也就是说,地球上任何两个人之间,最多通过6次关联,就能互相到达。这就是所谓“六度分隔”说法的来源。这个‘大社会,小世界’的现象,可用一句人们在聚会时偶然碰见意料之外的熟人时常用的话来概括:“世界真小!”

 

除了‘直径’之外,还有两个有趣的特性表征与人际关系网大小有关的性质:‘聚类系数’和‘度分布曲线’。

 

聚类系数可以用来描述人际关系中的“物以类聚,人以群分”的抱团聚类现象。

聚类系数的数值从01变化。用通俗的话来说,如果在一个人际关系网中,每个人所有的朋友互相都是朋友,这个网的聚类系数就是1。反之,如果每个人的朋友互相之间全都不认识,这个网的聚类系数就是0。直观地看,聚类系数越大,说明抱团抱得越紧;聚类系数越小,说明组织越松散。

 

对人际关系网聚类系数的研究表明,人际关系网的聚类系数是一个小于1,但大大地大于1/N的数,这儿N是关系网的总人数。人类社会有明显的社团现象。各社团内部联系紧密,社团和社团之间,有相对少得多的连线相连,称之为所谓的“弱纽带”。而正是这些弱纽带,在形成“小世界”模型上,发挥着非常强大的作用。有很多人在找工作时会体会到这种弱纽带的效果。 通过弱纽带的连接,人际关系网的‘直径’迅速变小,人与人之间的距离变得非常“相近”,错综复杂扑朔迷离人际关系网,因此才表现出了‘六度分隔’的现象。

 

度分布曲线则可描述人际关系中各种人物的重要程度。人际关系网中的度分布曲线,用通俗的说法,就是网中朋友数目的分布曲线p(k),这儿k是‘朋友数’,p(k)是‘朋友数’为k的人数。比如说,如果有一个100人的社团,每个成员都是完全同等重要的,每个人都有而且只有10个朋友,那么,除了10之外,朋友数为别的数目(1234567……1112等等)的概率(人数)都是0。所以,这个人际关系网的朋友数分布曲线就是一个只在在10这个数值处等于100delta函数。但实际上的人类社会网显然完全不是一个平均同等的社会:每个人的重要性由他所处的社会位置所决定。比如说,总统、社会名流、或是影视明星的社交圈要比普通人大得多。举例说,大多数的人(上亿个人)平均每人有20-100个朋友,而名人们可能平均每人有多于120个朋友,性格孤僻的一伙人可能平均每人只有几个朋友,这样的话,度分布曲线看起来是一条在20-100之间出现高峰的一条钟形曲线。

 

据说一个心理学教授在课堂上提出一个问题:“要认识多少人?才能接触到全世界?”同学们一阵静默后,教授意味深长地说:“你只需要认识一个人!”

 

这个教授的言外之意是:这个世界事实上是紧密相连着的,也许我们没有察觉出来。的确,我们人人都置身于这个连接的小世界中,因此,我们应该充分相信和利用自己的人脉关系,认识朋友,扩展圈子,尽享人际关系之乐。

 

综上所述,有关我们这个世界的人际关系网的大小,可以用下面几句话来概括:

 

大社会,小世界。

强作用,弱纽带。

物聚类,人分群。

六度隔,远朋来。

名流士,多宾客。

孤僻人,少往来。

勤社交,扩人脉。

地球村,温暖在。

 

浏览(1624) (0) 评论(0)
发表评论
我的名片
天蓉
注册日期: 2011-09-18
访问总量: 1,185,509 次
点击查看我的个人资料
Calendar
最新发布
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
· 费马大定理-欧拉猜想
· 费马大定理-这个证明包你懂!
· 费马大定理-救了他的命
分类目录
【作品目录】
· 《走近混沌》目录
· 《走近量子》目录
· 《诗谜画谜》目录
· 《傻博士的初恋》目录
· 《美国房客》目录
· 《隐身惊魂记》目录
· 《白雪之恋》:目录
【科普-走近混沌】
· 《走近混沌》-25-27-全文完
· 《走近混沌》-24-孤立子的故事
· 《走近混沌》-23-混沌到有序
· 《走近混沌》-22-再回魔鬼聚合物
· 《走近混沌》-21-萬變之不變
· 《走近混沌》-20-混沌魔鬼不穩定
· 《走近混沌》-19-混沌魔鬼的誕生
· 《走近混沌》-18-生態繁衍和混沌
· 《走近混沌》-17-混沌遊戲
· 《走近混沌》-16-三體問題及趣聞
【科普-走近量子】
· 走近量子(19)量子隐形传输(二
· 走近量子(18)量子隐形传输(一
· 走近量子(17)量子计算机
· 走近量子(16)GHZ定理-繼續
· 走近量子(15)GHZ定理
· 走近量子(14)qubit和费曼
· 走近量子(13)从纠缠态到qubit
· 走近量子(12)GHZ登场
· 走近量子(11)埃斯派克特的实验
· 走近量子(10)最後的判决
【谜语集锦3】
· 留下一串謎(詩謎+畫謎)- 44
· 留下一串謎(詩謎+畫謎)- 43
· 留下一串谜(诗谜+画谜)- 42
· 留下一串谜(诗谜+画谜)- 41
· 留下一串谜(诗谜+画谜)- 40
· 留下一串谜(诗谜+画谜)- 39
· 留下一串谜(诗谜+画谜)- 38
· 留下一串谜(诗谜+画谜)- 37
· 留下一串谜(诗谜+画谜)- 36
· 留下一串谜(诗谜+画谜)- 35
【谜语集锦2】
· 留下一串谜(诗谜+画谜)- 30
· 留下一串谜(诗谜+画谜)- 29
· 留下一串谜(诗谜+画谜)- 28
· 留下一串谜(诗谜+画谜)- 27
· 留下一串谜(诗谜+画谜)- 26
· 留下一串谜(诗谜+画谜)- 25
· 留下一串谜(诗谜+画谜)- 24
· 留下一串谜(诗谜+画谜)- 23
· 留下一串谜(诗谜+画谜)- 22
· 留下一串谜(诗谜+画谜)- 21
【谜语集锦1】
· 留下一串谜(诗谜+画谜)- 20
· 留下一串谜(诗谜+画谜)- 19
· 留下一串谜(诗谜+画谜)- 18
· 留下一串谜(诗谜+画谜)- 17
· 留下一串谜(诗谜+画谜)- 16
· 留下一串谜(诗谜+画谜)- 15
· 留下一串谜(诗谜+画谜)- 14
· 留下一串谜(诗谜+画谜)- 13
· 留下一串谜(诗谜+画谜)- 12
· 留下一串谜(诗谜+画谜)- 11
【谜语集锦】
· 留下一串谜(诗谜+画谜)- 10
· 留下一串谜(诗谜+画谜)- 9
· 留下一串谜(诗谜+画谜)- 8
· 留下一串谜(诗谜+画谜)- 7
· 留下一串谜(诗谜+画谜)- 6
· 留下一串谜(诗谜+画谜)- 5
· 留下一串谜(诗谜+画谜)- 4
· 留下一串谜(诗谜+画谜)- 3
· 留下一串谜(诗谜+画谜)- 2
· 留下一串谜(诗谜+画谜)- 1
【傻博士的初恋46-50】
· 傻博士的初恋-50-尾声
· 傻博士的初恋-49-水落石出
· 傻博士的初恋-48-谋杀案?
· 傻博士的初恋-47-当个女侦探
· 傻博士的初恋-46-跟踪依娃
【傻博士的初恋:41-45】
· 傻博士的初恋-45-疑惑
· 傻博士的初恋-44-分手?
· 傻博士的初恋-43-闯荡哈林区
· 傻博士的初恋-42-平安夜(2)
· 傻博士的初恋-41-平安夜(1)
【傻博士的初恋36-40】
· 傻博士的初恋-40-回家
· 傻博士的初恋-39-感恩节(2)
· 傻博士的初恋-38-感恩节(1)
· 傻博士的初恋-37-古怪的量子
· 傻博士的初恋-36-罗德的忠告
【傻博士的初恋31-35】
· 傻博士的初恋-35-万圣节(2)
· 傻博士的初恋-34-万圣节(1)
· 傻博士的初恋-33-工作狂
· 傻博士的初恋-32-如此先进企业
· 傻博士的初恋-31-强词夺理
【“傻”博士的初恋:26-30】
· 傻博士的初恋-30-大金失踪
· 傻博士的初恋-29-恋爱的学问
· 傻博士的初恋-28-911(2)
· 傻博士的初恋-27-911(1)
· 傻博士的初恋-26-贾杨金
【“傻”博士的初恋:21-25】
· 傻博士的初恋-25-人脑和电脑
· 傻博士的初恋-24-硅谷看房子
· 傻博士的初恋-23-经济泡沫
· 傻博士的初恋-22-明娜来访
· 傻博士的初恋 -21- 亲密接触
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -20- 搬家
· 傻博士的初恋 -19- 罗德的故事
· 傻博士的初恋 -18- 糊涂有理
· 傻博士的初恋 -17- 糊涂博士
· 傻博士的初恋 -16- 疯涨的股票
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -15- “生日快乐!
· 傻博士的初恋 -14- 过生日
· 傻博士的初恋13- 父母来访
· 傻博士的初恋-12- “大袍子”博士
· 傻博士的初恋-11- 有惊无险
【“傻”博士的初恋:6-10】
· 傻博士的初恋-10- 太浩湖之旅
· 傻博士的初恋-9- 简单和复杂
· 傻博士的初恋-8- 笑阿姨
· 傻博士的初恋-7- 情人节
· 傻博士的初恋-6-大忙人
【“傻”博士的初恋:1-5】
· 傻博士的初恋-5-“萨沙”和“妮妮”
· 傻博士的初恋-4-合作伙伴?
· 傻博士的初恋-3-第一次约会
· 傻博士的初恋-2-棕榈大道
· 傻博士的初恋-1-初遇
· 傻博士的初恋:引子
【《美国房客》尾声】
· 《美国房客》- 35 经悠悠数月,
【《美国房客》生死游戏】
· 《美国房客》- 34 感生命有限,
· 《美国房客》- 33 知祸福相依,
· 《美国房客》- 32 忆德州旧识,
· 《美国房客》- 31 急自强有危,
· 《美国房客》- 30 烧藏宝真图,
· 《美国房客》- 29 欲引蛇出洞,
· 《美国房客》- 28 映院中人影,
· 《美国房客》- 27 破车祸真相,
· 《美国房客》- 26 听教授感慨,
· 《美国房客》- 25 记梦中影像,
【《美国房客》游子百态】
· 《美国房客》- 15 忆往事成烟,
· 《美国房客》- 14 解诗词秘密,
· 《美国房客》- 13 气弟弟不肖,
· 《美国房客》- 12 喜赴美寻梦,
· 《美国房客》- 11 厌名利薰心,
· 《美国房客》- 10 记车祸当日,
· 《美国房客》- 9 述加州之行,触
· 《美国房客》- 8 疑泰州宝藏,惑
· 《美国房客》- 7 用键盘交流,集
· 《美国房客》- 6 叙文革旧事,传
【《美国房客》楔子】
· 《美国房客》楔子-2 人物诗谜
· 《美国房客》楔子-1 一则新闻
【长篇悬疑小说《美国房客》】
【《隐身惊魂记》-独立节惊魂】
· 独立节惊魂-尾声
· 独立节惊魂-82-隐蛇现形白宫惊魂
· 独立节惊魂-81-遥控实现杀人游戏
· 独立节惊魂-80-毒蛇消失总监着急
· 独立节惊魂-79- 欢乐华府严阵以
· 独立节惊魂-78- 阳光谷城小虎遇
· 独立节惊魂-77-节日凌晨无人能眠
· 独立节惊魂-76-高人驾车出手相救
【《隐身惊魂记》-矽谷追逐】
· 矽谷追逐-75-隐身男孩被人跟踪
· 矽谷追逐-74-红木城中隐人现形
· 矽谷追逐-73-隐人出没捉狭添乱
· 矽谷追逐-72-戈尔自杀拉曼被捕
· 矽谷追逐-71-身陷囹圄处境危急
· 矽谷追逐-70-月黑风高事故不断
· 矽谷追逐-69-野狼活动毒蛇突现
· 矽谷追逐-68-天灾可怕人心奸诈
· 矽谷追逐-67-狡猾政客阴谋小人
· 矽谷追逐-66-精心策划设置圈套
【《隐身惊魂记》-阴谋政治】
· 阴谋政治-61-驶离华府何去何从
· 阴谋政治-60-警商勾结顾客遭殃
· 阴谋政治-59-欲破阴谋逃避逮捕
· 阴谋政治-58-隐侠计划云游湾区
· 阴谋政治-57-别墅取车拉曼落网
· 阴谋政治-56-流浪小子守株待兔
· 阴谋政治-55-上司策划逮捕迈克
· 阴谋政治-54-两月前的重大案件
· 阴谋政治-53-分析案情迷雾重重
· 阴谋政治-52-跟踪绅士疑点多多
【长篇科幻小说《隐身惊魂记》】
· 脑电波之谜-40-急中生智无辜遇难
· 脑电波之谜-39-藏身遁形纽约历险
· 脑电波之谜-38-情况复杂小虎不见
· 脑电波之谜-37-人性兽性互纠互缠
· 脑电波之谜-36-隐人胡闹大使剧院
· 脑电波之谜-35-历历在目十年之前
· 脑电波之谜-34-拉曼失踪线索中断
· 脑电波之谜-33-切身体会隐身之趣
· 《隐身惊魂记》目录
· 脑电波之谜-32 别墅忽见往日同学
【随笔】
【科普】
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
· 费马大定理-欧拉猜想
· 费马大定理-这个证明包你懂!
· 费马大定理-救了他的命
· “费马数”-猜想
· 猫咪怎样启发了人工神经网络的诞
· 量子纠缠:“鬼魅般的超距作用”|
【诗词】
· 《露珠》
· 《小花》
· 《激流》
· 《团聚》
· 《三叠泉》
· 《咏荷》
【小说】
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:1-56
· 《白雪之恋》:1-55
· 《白雪之恋》:1-54
· 《白雪之恋》:1-53
· 《白雪之恋》:1-52
· 《白雪之恋》:1-51
存档目录
2024-11-17 - 2024-11-20
2024-10-16 - 2024-10-28
2024-09-07 - 2024-09-07
2024-08-27 - 2024-08-30
2024-06-04 - 2024-06-26
2024-05-01 - 2024-05-29
2024-04-03 - 2024-04-23
2024-03-07 - 2024-03-28
2024-02-12 - 2024-02-20
2024-01-08 - 2024-01-23
2023-12-09 - 2023-12-19
2023-11-08 - 2023-11-27
2023-06-10 - 2023-06-10
2023-04-08 - 2023-04-08
2022-11-07 - 2022-11-07
2022-10-09 - 2022-10-11
2022-09-12 - 2022-09-12
2022-07-09 - 2022-07-09
2022-06-08 - 2022-06-08
2022-05-26 - 2022-05-26
2022-04-25 - 2022-04-25
2022-03-10 - 2022-03-30
2022-02-03 - 2022-02-28
2022-01-07 - 2022-01-17
2021-12-16 - 2021-12-29
2013-07-08 - 2013-07-08
2013-02-07 - 2013-02-07
2013-01-05 - 2013-01-26
2012-12-05 - 2012-12-26
2012-11-04 - 2012-11-25
2012-10-01 - 2012-10-31
2012-09-02 - 2012-09-27
2012-08-01 - 2012-08-30
2012-07-03 - 2012-07-31
2012-06-02 - 2012-06-30
2012-05-01 - 2012-05-31
2012-04-01 - 2012-04-30
2012-03-01 - 2012-03-31
2012-02-01 - 2012-02-29
2012-01-01 - 2012-01-30
2011-12-01 - 2011-12-31
2011-11-01 - 2011-11-30
2011-10-19 - 2011-10-31
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.