设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
 
天蓉的博客  
随笔、小说、诗词、科普。 “真和美,是科学不变的精髓;爱与死,是文学永恒的主题……”  
网络日志正文
《走近混沌》-10-简单之美 2012-09-13 13:04:42

第十章:简单之美

 

尽管几个简单的线性自相似的经典分形的历史,最早可追溯到十九世纪後期。但对于分形的深入研究,诸如德勃罗图等,却是近四十年的事。这是与计算机的飞速发展分不开的。因为,先进快速的计算技术使得大量的迭代运算可以在更短的时间内完成。图象显示技术的发展为我们提供了探索分形复杂性的方便环境。没有现代的计算机技术,人们不可能欣赏到如此美丽的曼德勃罗图和朱利亚图。

 

“从艺术的角度,非线性迭代生成的分形图案的确很美。”李四说∶“那种美给我们以视觉的享受,分形音乐则给我们以听觉的享受。但是,科学家们所欣赏的应该是另一种美┅┅”

 

“对呀!是这个世界所遵循的科学规律的内在之美。”王二抢着补充了几句∶

 

“你们还记得吧,用计算机生成的树叶图和瞢类植物叶子是如此之相像,还有树枝、脑血管、人体┅┅这段时间我一直在想,世界上这些看起来千变万化的一切,恐怕都是由几条简单的生成规则演化出来的哦,就像张三在计算机程序中用一个简单方程进行迭代一样,细胞分裂又分裂,迭代又迭代,一代又一代┅┅最後就成了我们世界中的各种生物体。啊,不只是生物,还有云彩、闪电、海岸线┅┅几条简单规律产生了大自然的一切┅┅”

 

看着王二浮想联翩的神态,张三笑了∶“别想象得太远了!想我们力所能及的。你刚才说到的树叶图和厥类植物叶子相像这点,使我想起最近看到的一篇文章,谈到将分形用在计算机图像压缩技术方面的事情。”

 

计算机技术使得我们能探索分形的复杂性,分形数学又反过来造福于计算机技术。科学和技术总是相辅相成,互相推波助澜。科学始于探索,技术立足于应用。探索能发现自然之美,应用则创造人工之巧。美之事物必能找到应用的途径,而新颖的技术构思又总是能反射出理论的光辉。分形之美与电脑显示技术之新成果息息相关,相照辉映。

 

当年,分形的研究之所以能在众多的学科范围内引起轰动,其原因之一便是∶如此复杂的结构却产生于几条简单的变换规则。复杂是一种美,简单也是一种美。科学的宗旨之一可以说就是要用简单的规律来描述复杂的大自然。复杂的形态背後可能隐藏着简单的法则。

 

从分形的这种‘简单表示复杂’的特性,人们很自然地想到了将分形用于作为计算机中储存、压缩图形资料的一种方式。比如象曼德勃罗集那样复杂的图形,只不过是用一个简单的方程(z = z*z + c)就能表示出来。今天,我们的的文明社会正在大阔步地迈进一个数字信息时代。数字化之後的信息需要通过媒介来记录、传送、储存。使用传统的方法储存声音和图像,数 量非常大。因此,我们才有了所谓的图像压缩技术,就是要在保证一定质量的条件下,将储存的信息量减少,减到越少越好。

 

那厶,有哪些传统的图像储存和压缩方法呢?

 

在数字世界中,信息量的多少用所需要的比特数(01)来衡量。表达信息时所需要的比特数目越小越好。也就是说,最好能将信息“压缩一下。也叫做给信息“编码。比如说吧,为了要储存下图中的只有黑白颜色的科赫曲线,我们可以采取如下右边的文字说明中所列举的三种方法编码∶

 

                     图(10.1)∶用不同方法压缩图象的说明

 

第一种是最原始的方法,是将图形分成许多小格子(象素)。例如,我们可以将图10.1分成 256*640个小格子,也就是共163840个象素。然後,需要将这些象素所具有的信息储存起来。因为图10.1只是黑白图形,每一个象素的信息不是’,就是’,正好对应于比特的‘0’‘1’。这意味着,一个象素需要一个比特来表示。因此,要用这种编码方法储存整个图形,需要的比特数就等于163840。第二种方法是将图形看作诺干点和线。上面的图中共有256条直线,经由256个点逐次连成。所以,只要储存这256个点的位置就可以了。因为每个点在图中的位置需要两个整数表示,而每个整数都需要32个比特来表示。因此,这第二种编码方法需要的比特数是256*2*32=16384。显然,第二种方法比第一种方法更经济合算,因为它将信息压缩了10倍。

 

如果我们把这个图形用它的分形的初始值及迭代函数来编码的话,就是上图中的第三种方法。使用第三种方法,需要储存的信息只包括4次线性变换迭代以及2个初始点位置。将这些数值换算成比特数,只需要928个比特就可以了。比较原始的163840比特而言,就等于信息被压缩了100倍以上。

 

有关分形技术用于图像压缩,张三谈起了他自己的经验∶在储存曼德勃罗集图形时,如果存为(BMP)文件的话,文件的大小为430*8千比特,这种方法就相当于上面所说的第一种方法。而如果将它存为(GIF)文件的话,文件的大小仅为30*8千比特。也就是说,在这种情形下,gif格式相对于bmp格式,信息压缩了14.3倍。

 

张三说∶“可是gif格式也太大了啊,我用程序生成这个图形,存的信息不过是一个简单方程,几个系数,就像刚才的科赫曲线,最多几个千比特,就足够了呀。”

 

王二又兴奋起来∶“对啦,生物体一定是把某种类似的、最优化的编码存到基因,DNA里面了┅┅大自然往往做得比人工更为精致和巧妙┅┅”

 

李四却很感兴趣分形图像压缩,说是曾经做过用傅立叶变换压缩声音信号的问题,先和两位一起复习复习。

 

张三附合∶“对,我们先不管图像信号,声音信号的处理更基本和简单一些。”

 

其实,不论是声音还是图像信号,最原始的信息都可看作是强度关于时间(或空间)的函数。如我们上面说到的,一个固定的黑白图像可用在每一个像素位置的光强度(01)表示,一个原始的声音信息则用在一系列的时间点测量的声音强度来表示。所以,最原始的储存方法就是∶把声音的强度按不同时间点列成一个表储存起来,比如说,转换成电信号保存到磁带上。以後便可以将磁带上的数值读出来,再转换成声音信号。

 

这种储存声音的原始方法类似于刚才谈到图像编码的第一种方法。可以说是完整的储存方法,但它并不总是最好的,也不是最有效的方法。

 

声音的信号除了随时间而变的强弱之外,还有一个很重要的特点,就是它的频率。频率也是声波中给我们大脑更深刻印象的东西。学唱歌时首先不就是学“多来米法硕”吗,那描述的就是声音中不同的主频率。

 

刚说到“多来米法硕”,正好林零和一伙音乐系的女学生在旁边走过,听见这句话便好奇地站下来继续听。

 

既然频率在声音中是如此重要,人们自然想到储存声音应该储存它的频率。对啦,作曲家们就很聪明,他们将所作的曲子用乐谱的形式记下来,那不就是记录的频率吗?傅立叶变换呢,则是科学家工程师们所使用的乐谱,是由法国数学家在1822年创立的。比之音乐中的乐谱,傅立叶频谱有过之而无不及,它把声音信息中包含的所有频率分量都找了出来。这个过程听起来有点繁琐,似乎画蛇添足!不过,傅立叶变换在数学、物理、工程各方面都得到广泛应用,是信息处理中使用得最多的变换,被誉为信息处理技术上一个重要的里程碑。

 

储存频谱的优点是储存的信息量少。当我们按下电子琴的中心C按键时,电子琴发出一个‘多’的声音。将这个声音用强度时间表来储存,每1毫秒存一个强度值,1分中就需要存60000个实数,需用3840千比特。如果存它的频谱,暂时不考虑泛音的话,只需要存这个频率的数值和强度,2个实数就可以了,这不就等于是把信息量“压缩”了几千倍吗?即使考虑还得存泛音的数 ,也可以达到几百倍的压缩率吧。

 

一个女孩有些迷惑不解∶“一个‘多’弹一分钟,这厶长啊?”

 

大家笑了起来,笑得女孩有些不好意思。可李四说,这个疑问问到了点子上哦!傅立叶变换只记下了频率信号,完全没有时间的信息,是不行的。它就像是用一把频率固定、但时间无限长的尺子来量东西,这把尺太长了!所以,在实际上使用的是如图(10.2)所示的‘窗口傅立叶变换’,把尺子按时间分成一段一段的。

 

图(10.2)对三段不同频率的正弦函数组成的图形的窗口傅立叶变换结果

 

林零很有悟性,对王二说∶“这个窗口傅立叶变换的道理和音乐上的曲谱很像啊。既有时间,也有频率┅┅但是┅┅这些和你们谈论的分形又有什厶关系呢?”

 

王二向她解释了一下刚才谈到的分形用于图像压缩之事。

 

刚才说到的是对声音信息的傅立叶变换处理。回到图像编码领域,原理也是类似的,只不过需要将时间用二维空间来代替。

 

对信号的傅立叶变换压缩,利用的是信号的频率特征。用分形的原理进行图像压缩,则是利用图形的自相似性。

 

分形图象压缩的方法(也称迭代函数系统IFS方法)是美国佐治亚理工学院的巴恩斯利教授首创的。但分形图像压缩技术至今仍然不够成熟。尽管目前已有商品化的计算机软件,但仍有许多问题尚待解决。分形图像压缩的解码速度很快,但编码速度慢,比较 合一次写入、多次读出的文档。

 

正是∶“路漫漫其修远兮,吾将上下而求索。”

 

上一篇∶分形音乐

返回目录

下一篇∶拉普拉斯妖

浏览(2727) (1) 评论(0)
发表评论
我的名片
天蓉
注册日期: 2011-09-18
访问总量: 1,213,753 次
点击查看我的个人资料
Calendar
最新发布
· 费马大定理-最后一步
· 费马大定理-铺平道路
· 费马大定理-椭圆函数
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
分类目录
【作品目录】
· 《走近混沌》目录
· 《走近量子》目录
· 《诗谜画谜》目录
· 《傻博士的初恋》目录
· 《美国房客》目录
· 《隐身惊魂记》目录
· 《白雪之恋》:目录
【科普-走近混沌】
· 《走近混沌》-25-27-全文完
· 《走近混沌》-24-孤立子的故事
· 《走近混沌》-23-混沌到有序
· 《走近混沌》-22-再回魔鬼聚合物
· 《走近混沌》-21-萬變之不變
· 《走近混沌》-20-混沌魔鬼不穩定
· 《走近混沌》-19-混沌魔鬼的誕生
· 《走近混沌》-18-生態繁衍和混沌
· 《走近混沌》-17-混沌遊戲
· 《走近混沌》-16-三體問題及趣聞
【科普-走近量子】
· 走近量子(19)量子隐形传输(二
· 走近量子(18)量子隐形传输(一
· 走近量子(17)量子计算机
· 走近量子(16)GHZ定理-繼續
· 走近量子(15)GHZ定理
· 走近量子(14)qubit和费曼
· 走近量子(13)从纠缠态到qubit
· 走近量子(12)GHZ登场
· 走近量子(11)埃斯派克特的实验
· 走近量子(10)最後的判决
【谜语集锦3】
· 留下一串謎(詩謎+畫謎)- 44
· 留下一串謎(詩謎+畫謎)- 43
· 留下一串谜(诗谜+画谜)- 42
· 留下一串谜(诗谜+画谜)- 41
· 留下一串谜(诗谜+画谜)- 40
· 留下一串谜(诗谜+画谜)- 39
· 留下一串谜(诗谜+画谜)- 38
· 留下一串谜(诗谜+画谜)- 37
· 留下一串谜(诗谜+画谜)- 36
· 留下一串谜(诗谜+画谜)- 35
【谜语集锦2】
· 留下一串谜(诗谜+画谜)- 30
· 留下一串谜(诗谜+画谜)- 29
· 留下一串谜(诗谜+画谜)- 28
· 留下一串谜(诗谜+画谜)- 27
· 留下一串谜(诗谜+画谜)- 26
· 留下一串谜(诗谜+画谜)- 25
· 留下一串谜(诗谜+画谜)- 24
· 留下一串谜(诗谜+画谜)- 23
· 留下一串谜(诗谜+画谜)- 22
· 留下一串谜(诗谜+画谜)- 21
【谜语集锦1】
· 留下一串谜(诗谜+画谜)- 20
· 留下一串谜(诗谜+画谜)- 19
· 留下一串谜(诗谜+画谜)- 18
· 留下一串谜(诗谜+画谜)- 17
· 留下一串谜(诗谜+画谜)- 16
· 留下一串谜(诗谜+画谜)- 15
· 留下一串谜(诗谜+画谜)- 14
· 留下一串谜(诗谜+画谜)- 13
· 留下一串谜(诗谜+画谜)- 12
· 留下一串谜(诗谜+画谜)- 11
【谜语集锦】
· 留下一串谜(诗谜+画谜)- 10
· 留下一串谜(诗谜+画谜)- 9
· 留下一串谜(诗谜+画谜)- 8
· 留下一串谜(诗谜+画谜)- 7
· 留下一串谜(诗谜+画谜)- 6
· 留下一串谜(诗谜+画谜)- 5
· 留下一串谜(诗谜+画谜)- 4
· 留下一串谜(诗谜+画谜)- 3
· 留下一串谜(诗谜+画谜)- 2
· 留下一串谜(诗谜+画谜)- 1
【傻博士的初恋46-50】
· 傻博士的初恋-50-尾声
· 傻博士的初恋-49-水落石出
· 傻博士的初恋-48-谋杀案?
· 傻博士的初恋-47-当个女侦探
· 傻博士的初恋-46-跟踪依娃
【傻博士的初恋:41-45】
· 傻博士的初恋-45-疑惑
· 傻博士的初恋-44-分手?
· 傻博士的初恋-43-闯荡哈林区
· 傻博士的初恋-42-平安夜(2)
· 傻博士的初恋-41-平安夜(1)
【傻博士的初恋36-40】
· 傻博士的初恋-40-回家
· 傻博士的初恋-39-感恩节(2)
· 傻博士的初恋-38-感恩节(1)
· 傻博士的初恋-37-古怪的量子
· 傻博士的初恋-36-罗德的忠告
【傻博士的初恋31-35】
· 傻博士的初恋-35-万圣节(2)
· 傻博士的初恋-34-万圣节(1)
· 傻博士的初恋-33-工作狂
· 傻博士的初恋-32-如此先进企业
· 傻博士的初恋-31-强词夺理
【“傻”博士的初恋:26-30】
· 傻博士的初恋-30-大金失踪
· 傻博士的初恋-29-恋爱的学问
· 傻博士的初恋-28-911(2)
· 傻博士的初恋-27-911(1)
· 傻博士的初恋-26-贾杨金
【“傻”博士的初恋:21-25】
· 傻博士的初恋-25-人脑和电脑
· 傻博士的初恋-24-硅谷看房子
· 傻博士的初恋-23-经济泡沫
· 傻博士的初恋-22-明娜来访
· 傻博士的初恋 -21- 亲密接触
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -20- 搬家
· 傻博士的初恋 -19- 罗德的故事
· 傻博士的初恋 -18- 糊涂有理
· 傻博士的初恋 -17- 糊涂博士
· 傻博士的初恋 -16- 疯涨的股票
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -15- “生日快乐!
· 傻博士的初恋 -14- 过生日
· 傻博士的初恋13- 父母来访
· 傻博士的初恋-12- “大袍子”博士
· 傻博士的初恋-11- 有惊无险
【“傻”博士的初恋:6-10】
· 傻博士的初恋-10- 太浩湖之旅
· 傻博士的初恋-9- 简单和复杂
· 傻博士的初恋-8- 笑阿姨
· 傻博士的初恋-7- 情人节
· 傻博士的初恋-6-大忙人
【“傻”博士的初恋:1-5】
· 傻博士的初恋-5-“萨沙”和“妮妮”
· 傻博士的初恋-4-合作伙伴?
· 傻博士的初恋-3-第一次约会
· 傻博士的初恋-2-棕榈大道
· 傻博士的初恋-1-初遇
· 傻博士的初恋:引子
【《美国房客》尾声】
· 《美国房客》- 35 经悠悠数月,
【《美国房客》生死游戏】
· 《美国房客》- 34 感生命有限,
· 《美国房客》- 33 知祸福相依,
· 《美国房客》- 32 忆德州旧识,
· 《美国房客》- 31 急自强有危,
· 《美国房客》- 30 烧藏宝真图,
· 《美国房客》- 29 欲引蛇出洞,
· 《美国房客》- 28 映院中人影,
· 《美国房客》- 27 破车祸真相,
· 《美国房客》- 26 听教授感慨,
· 《美国房客》- 25 记梦中影像,
【《美国房客》游子百态】
· 《美国房客》- 15 忆往事成烟,
· 《美国房客》- 14 解诗词秘密,
· 《美国房客》- 13 气弟弟不肖,
· 《美国房客》- 12 喜赴美寻梦,
· 《美国房客》- 11 厌名利薰心,
· 《美国房客》- 10 记车祸当日,
· 《美国房客》- 9 述加州之行,触
· 《美国房客》- 8 疑泰州宝藏,惑
· 《美国房客》- 7 用键盘交流,集
· 《美国房客》- 6 叙文革旧事,传
【《美国房客》楔子】
· 《美国房客》楔子-2 人物诗谜
· 《美国房客》楔子-1 一则新闻
【长篇悬疑小说《美国房客》】
【《隐身惊魂记》-独立节惊魂】
· 独立节惊魂-尾声
· 独立节惊魂-82-隐蛇现形白宫惊魂
· 独立节惊魂-81-遥控实现杀人游戏
· 独立节惊魂-80-毒蛇消失总监着急
· 独立节惊魂-79- 欢乐华府严阵以
· 独立节惊魂-78- 阳光谷城小虎遇
· 独立节惊魂-77-节日凌晨无人能眠
· 独立节惊魂-76-高人驾车出手相救
【《隐身惊魂记》-矽谷追逐】
· 矽谷追逐-75-隐身男孩被人跟踪
· 矽谷追逐-74-红木城中隐人现形
· 矽谷追逐-73-隐人出没捉狭添乱
· 矽谷追逐-72-戈尔自杀拉曼被捕
· 矽谷追逐-71-身陷囹圄处境危急
· 矽谷追逐-70-月黑风高事故不断
· 矽谷追逐-69-野狼活动毒蛇突现
· 矽谷追逐-68-天灾可怕人心奸诈
· 矽谷追逐-67-狡猾政客阴谋小人
· 矽谷追逐-66-精心策划设置圈套
【《隐身惊魂记》-阴谋政治】
· 阴谋政治-61-驶离华府何去何从
· 阴谋政治-60-警商勾结顾客遭殃
· 阴谋政治-59-欲破阴谋逃避逮捕
· 阴谋政治-58-隐侠计划云游湾区
· 阴谋政治-57-别墅取车拉曼落网
· 阴谋政治-56-流浪小子守株待兔
· 阴谋政治-55-上司策划逮捕迈克
· 阴谋政治-54-两月前的重大案件
· 阴谋政治-53-分析案情迷雾重重
· 阴谋政治-52-跟踪绅士疑点多多
【长篇科幻小说《隐身惊魂记》】
· 脑电波之谜-40-急中生智无辜遇难
· 脑电波之谜-39-藏身遁形纽约历险
· 脑电波之谜-38-情况复杂小虎不见
· 脑电波之谜-37-人性兽性互纠互缠
· 脑电波之谜-36-隐人胡闹大使剧院
· 脑电波之谜-35-历历在目十年之前
· 脑电波之谜-34-拉曼失踪线索中断
· 脑电波之谜-33-切身体会隐身之趣
· 《隐身惊魂记》目录
· 脑电波之谜-32 别墅忽见往日同学
【随笔】
【科普】
· 费马大定理-最后一步
· 费马大定理-铺平道路
· 费马大定理-椭圆函数
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
· 费马大定理-欧拉猜想
· 费马大定理-这个证明包你懂!
· 费马大定理-救了他的命
【诗词】
· 《露珠》
· 《小花》
· 《激流》
· 《团聚》
· 《三叠泉》
· 《咏荷》
【小说】
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:1-56
· 《白雪之恋》:1-55
· 《白雪之恋》:1-54
· 《白雪之恋》:1-53
· 《白雪之恋》:1-52
· 《白雪之恋》:1-51
存档目录
2024-12-03 - 2024-12-06
2024-11-17 - 2024-11-23
2024-10-16 - 2024-10-28
2024-09-07 - 2024-09-07
2024-08-27 - 2024-08-30
2024-06-04 - 2024-06-26
2024-05-01 - 2024-05-29
2024-04-03 - 2024-04-23
2024-03-07 - 2024-03-28
2024-02-12 - 2024-02-20
2024-01-08 - 2024-01-23
2023-12-09 - 2023-12-19
2023-11-08 - 2023-11-27
2023-06-10 - 2023-06-10
2023-04-08 - 2023-04-08
2022-11-07 - 2022-11-07
2022-10-09 - 2022-10-11
2022-09-12 - 2022-09-12
2022-07-09 - 2022-07-09
2022-06-08 - 2022-06-08
2022-05-26 - 2022-05-26
2022-04-25 - 2022-04-25
2022-03-10 - 2022-03-30
2022-02-03 - 2022-02-28
2022-01-07 - 2022-01-17
2021-12-16 - 2021-12-29
2013-07-08 - 2013-07-08
2013-02-07 - 2013-02-07
2013-01-05 - 2013-01-26
2012-12-05 - 2012-12-26
2012-11-04 - 2012-11-25
2012-10-01 - 2012-10-31
2012-09-02 - 2012-09-27
2012-08-01 - 2012-08-30
2012-07-03 - 2012-07-31
2012-06-02 - 2012-06-30
2012-05-01 - 2012-05-31
2012-04-01 - 2012-04-30
2012-03-01 - 2012-03-31
2012-02-01 - 2012-02-29
2012-01-01 - 2012-01-30
2011-12-01 - 2011-12-31
2011-11-01 - 2011-11-30
2011-10-19 - 2011-10-31
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.