设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
 
天蓉的博客  
随笔、小说、诗词、科普。 “真和美,是科学不变的精髓;爱与死,是文学永恒的主题……”  
网络日志正文
中国古代数学 2022-04-25 13:32:35

中国古代数学 

古代的东西方皆有早期数学的诞生和发展,可谓彼此独立各有千秋。

1.古中国的算学

 

古希腊有阿基米德计算球体积的故事,中国的祖冲之和儿子祖暅也得到过同样结果,但晚了约700年左右。不过他们使用的方法,即三国时代的刘徽首先提出、后来被称之为“祖暅原理”的方法,却比西方得到的同样原理(卡瓦列里原理)早了一千多年。

 

祖暅原理说:“幂势既同,则积不容异”,即如果所有等高处的截面积都相等,二立体的体积必相等。

1:祖暅原理(YouTube视频)

 

实际上说穿了,中国古代数学的本质就是“计算”。祖冲之是中国古代最伟大的数学家,他的最大贡献就是将圆周率的结果计算到了小数点后第7位,国际上因此称圆周率为“祖率”,并建议将314日定为“祖冲之日”。祖冲之的天文成就包括计算和测量回归日及月球绕地周期,其结果与现代数据相差无几,由此月球上一个火山口,被学界命名为“祖冲之火山口”。

 

古中国与古希腊数学的另一区别是对数学发展的推动力。古希腊人视数学为爱好和游戏,古中国独尊文史轻视数理,因此数学发展的驱动力基本上只是“实用”。“实用是目的,计算为核心”。这也就是为什么有人说中国古代并无“数学”,只有“算学”的原因。

 

因此,中国古代数学的主要特点是其算学特点。算学也有它先进发达的一面,并非完全没有理论,中国古代数学也有不少密切联系实际的理论,比如与算法相关的推理证明等。中国古代的许多算法,稍加改变可以用到现代的电子计算机上。

 

古中国数学的机械化思想,与古希腊数学的公理化思想,是数学发展过程中的两套马车,都促进了数学的发展。古希腊以几何为主,古中国多用代数方法,几何比代数更容易公理化,代数比几何更容易发展成机器算法。几何直观形象易于被众人接受,代数在非专业人士眼中则显得枯燥。可以说当时的两者各具优缺点。

 

古希腊数学衰落而通过阿拉伯传到欧洲的那段时期,正好是中国几位数学家刘徽祖冲之等活跃的时候。这两个分支在各自的跑道上独立发展,没有太大的关联。

 

在罗马帝国与欧洲中世纪,数学的自由精神受到限制,而中国古代数学却在13世纪(宋朝)时达到了巅峰。

 

不过再到后来,情况又逐渐走向反面,中国的封建社会和中央集权遏制了学术的发展,学术水平非但不进步反而巨大倒退,文化专制和盲目排外使得数学及科学均逐渐落伍。

 

2. 韩信点兵--中国剩余定理

 

“韩信点兵,多多益善”是一个成语,也涉及到中国古代一个著名的数学故事。秦末楚汉相争时,韩信率1500名将士,但第一次战后损伤了34百,于是,他急速点兵准备迎接下一场战斗。他的方法与众不同别出心裁。他命令士兵每3人排一排,发现最后多了2名,如每5人排一排则多3名,7人排一排,又是多出2名。然后韩信立即得出了他的兵员数是1073名。

 

这个数学问题的学术版名字叫做“中国剩余定理”,是我们中国古代数学贡献于世界的最光辉一篇。享誉世界,对数论研究、密码学及通俗如程序设计都有意义。

 

这道题最早出现在一千多年前的《孙子算经》中。

2:孙子算经

 

那只是当时一道不太起眼的叫做“物不知其数”的算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”翻译成现在使用的数学语言:一个数除以32,除以53,除以72,求这个数。比较聪明的小学生立刻能凑出来一个数:23。检查一下也的确符合题目所给的3个条件。

 

我说23是凑出来的,因为23是很小的数!对这个简单情况我们可以使用列举法,

 

32的数:258111417202326……

53的数:3813182328……

72的数:9162330……

 

满足这三个条件的共同数是“23”,所以便得到了答案。

 

不过眼尖的读者也发现这个结果并不适合韩信点兵,兵数太少了!韩信的兵至少1000以上啊。不过这个问题有不止一个答案,事实上,答案(通解)可以写成:23+3*5*7*t = 23+105t,其中t = 0, 1, 2……。由此可以得到在任何整数范围问题的答案。例如,如果设t = 10,便得到了韩信的答案。

 

上面的分析虽然简单,也可以悟出几条此类问题的共同特点:

 

1,答案需要满足3个条件,2,答案不止一个,可以加上被除数的公倍数的倍数。3,公倍数很重要。

 

明朝有位数学家叫程大位,他用四句诗概括这个问题的解决方案:

 

3:程大位的诗(YouTube视频)

 

为什么702115105有如此神奇作用?702115105是从何而来?

 

这几个数的性质:70除以31,被57整除,所以70a除以3a,也被57整除;21余以51,被37整除,所以21b除以5b,也被37整除;15除以71,被35整除,所以15c除以7c,被35整除。而105则是357的最小公倍数。

 

总之来说:70a21b15c是被3除余a,被5除余b,被7除余c的数,这个数如果大于公倍数105,便逐次减去直到得到23

 

因此,一个数学难题的意义是在于得到它的通解以及进一步的推广。研究这个问题的主要的是一位宋朝数学家秦九韶,他才是对“物不知数”问题作出完整系统解答的人,载于1247年秦九韶的《数书九章》中,从而使这一问题变为了定理。再后来,《数书九章》由伟烈亚力在19世纪初译为英文,德国数学王子高斯在1801年对此类问题提出最早的完整系统解法。

 

4a)物不知数的通解

                         b)秦九韶和《数书九章》

                         c)高斯系统解决同余问题

YouTube视频)

 

这个物不知其数的题目,推广成“中国剩余定理”是这么说的:

 

 

中国剩余定理成为数论中关于一元线性同余方程组的重要定理,说明了一元线性同余方程组有解的准则以及求解方法。

 

3. 古中国的“方程术”

 

上一节介绍的“韩信点兵”(物不知其数)问题,来自《孙子算经》。该书中还有很多有趣的数学问题,比如鸡兔同笼就是一个几乎人人皆知的著名数学题。“鸡兔同笼,头共10,足共28,鸡兔各几只?”,设鸡x,兔yx+y=10, 2x+4y=28, 加减再消元,便可求得答案为46鸡。这个问题非常简单,但却代表了代数中的一大类问题:n元一次方程组。具体对这道鸡兔同笼问题,就是解一个2元一次方程组。

 

二元(n=2)的意思是有xy两个变量,“一次”是说只包含变量的1次项,说明方程是线性的。本题的方程组中有两个方程,才能解出两个变量。

 

中国古代数学著作中比较有名的,除了6世纪的《孙子算经》之外,还有早好几百年的《九章算术》。就成书的年代及篇幅而言,它们可以与古希腊数学相媲美。但中国数学书的特点是演绎和定理比较少,用现在的标准看起来,不像教科书,像是习题集和答案,再加上了有关解题方法的一些叙述。这是因为中国古代数学轻演绎重应用的原因。另外就是古希腊数学的重点是几何,古中国数学有更为浓郁的代数色彩,更像是7-8世纪的印度或阿拉伯的数学。

 

在《九章算术》中,第八章“方程”的第一道题目,就是解一个三元一次方程组(图1.7.5)。三个未知数,比鸡兔同笼问题多了一元,更为复杂一点。

 

5:《九章算术》“方程术”中的代数题(YouTube视频)

 

我们可以用现有的代数方法解这道题:令 x, y, z 分別代表上等稻、中等稻和下等稻各1捆所能打出的稻米斗数,然后列出如图1.7.5右所示的三元一次联立方程组,经过分离变量和消元过程,便能得到图1.7.5右下角所示的x, y, z 数值。

  

6:张苍和《九章算术》(YouTube视频)

 

张苍的年代稍后于阿基米德,大约是公元前200年左右的人士,阳武(今河南原阳)人。他不仅是西汉时期“以善算命世”的数学家兼天文学家,又是西汉的开国功臣,并且官至丞相十几年,他的政治声誉大于科技的。在数学方面,他是《九章算术》的作者和编辑者之一。

 
《九章算术》的“方程术” 一章:包括了联立一次方程组的解法和正负数的加减法,在世界数学史上是第一次出现。“方程”的地位相当于今天的线性方程组。“方程术”之算法上与今天加减消元法完全一样。这确实是中国古代数学一项了不起的成就,可以说超过中国剩余定理的意义,但是剩余定理融入了世界数学之中,方程术却只在中华文化中昙花一现,尽管也许解决了农业生产等等活动中的实用计算问题,但在闭关自守的环境下不被重视,无进一步的理论研究,最后被淹没而鲜为世人知。

 

《九章算术》中,对于开平方术、开立方术,叙述非常详尽,在当时也是很先进的方法。“方程术”与“开方术”相结合,后来发展了高次代数方程的“天元术” ,可以解出二项二次方程、二项三次方程,或更高次的方程,在数学的发展中也有重要地位。此是后话不表。

7:用符号表示的“天元术”的3次方程

 

4. “尝拟雄心胜丈夫 

 

尝拟雄心胜丈夫,这句诗出自于中国清朝一位女数学家王贞仪。

 

你可能没听过这位女科学家,但她在世界上却有一定的知名度:金星上有一个以她命名的撞击坑,还有一颗小行星也以她命名。

 

8:有关王贞仪的书和视频

 

王贞仪(17681797),字德卿,生于江宁府(今江苏南京),祖父宣化太守王者辅热爱读书,据说有藏书七十五橱,且精通历算,著述颇丰,父亲王锡琛科举不中,转而学医,精通医术。出身于如此家庭,自小聪明好学喜爱读书的王贞仪,从祖父学习天文,从祖母学诗词,父亲则教她医学、地理和数学。后来她又随同祖母和父亲去过北京、陕西、湖北、广东和安徽等地,游览名胜古迹,见闻颇多,也接触到不少社会实际。25岁时和安徽宣城的一个叫詹枚的青年结了婚,没有孩子,并且不幸于29岁时英年早逝。

 

王贞仪只活了短短的29年,但却留下不少著作。

 

数学著作有《西洋筹算增删》、《重订策算证讹》、《象数窥余》、《术算简存》、《筹算易知》、《勾股三角解》等。

 

文学作品《德风亭诗钞》和《德风亭集》。

 

天文学书籍:《岁差日至辩疑》、《盈缩高卑辩》、《经星辩》、《黄赤二道解》、《地圆论》、《地球比九重天论》、《岁轮定于地心论》、《日月五星随天左旋论一、二、三》、《月食解》

 

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。

 

据说她曾积极宣传阐释哥白尼的日心说,这在当时十分难能可贵。她用自己的独立见解来诠释天圆地方,并对日月食的成因做出了通俗易懂的解释。她还对岁差的成因、测量和计算做出贡献。

 

她写过一本介绍西方“算筹”的书。算筹是一种棒状的计算工具,其作用类似算盘。应用“算筹”进行计算的方法叫作“筹算”。17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究,还短暂地形成了一个安徽数学学派。王贞仪祖籍安徽,当年是这一学派的主要成员之一。她研究由西洋传入中国的这种筹算,并且写了三卷书向国人介绍。王贞仪思想开放,主张取中西算法之优点。对此,她在《勾股三角解》中有一段十分精彩的论述:“中西固有所异,而亦有所合。然其法理之密、心思之微,而未可以忽视。夫益知理求是,何择乎中西?唯各极其兼收之义。”

 

王贞仪酷爱天文,喜欢自己动手,她用屋顶横梁上悬挂的水晶灯当做太阳、小圆桌当做地球、圆形的镜子当作月亮。根据天文学原理,她一边移动这三个物体,一边不断地观察它们的相对位置和造成的现象,终于弄清了日月食的原理。她写了《月食解》一文,精确地阐释了月食发生的时间、食分深浅等知识,语言浅显直白,还有配图。王贞仪在她的另一部著作《地圆论》中,揭示了“相对空间位置的概念”,即宇宙没有上、下、正、反之分,以此而批驳流传了数千年的天圆地方之说。

 

她颇有文才,写诗填词懂绘画。“峰势长江矗,涛飞天外声。潜虬能护法,徵士独留名。”“始信须眉等巾帼,谁言儿女不英雄?”是她的诗句。


××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

本人的科普视频:YouTube:

天文航天:“談天說地”  https://www.youtube.com/playlist?list=PL6YHSDB0mjBLmFkh2_9b9fAlN7C4618gK

趣味数学:數學大觀園  https://www.youtube.com/playlist?list=PL6YHSDB0mjBJifi3hkHL25P3K9T-bmzeA

也发在微信公众号“天舸”上(微信号:gh_e01fc368fe31):

天舸.jpg

              长按/扫一扫二维码,敬请关注我的微信公众号天舸” !

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××



浏览(11347) (7) 评论(4)
发表评论
文章评论
作者:hare 留言时间:2022-04-27 00:51:52

请看悄悄话留言

回复 | 0
作者:hare 回复 天蓉 留言时间:2022-04-27 00:36:22

再请教。中国古代的数学或算学研究从来是分开的,没有人尝试过类似伽利略的小球定理似的工作。而且古代的数学研究,比如祖的圆周率,今人不会重复,对吗?

回复 | 0
作者:天蓉 回复 hare 留言时间:2022-04-26 14:10:59

谢谢读拙文。曾经看过李的视频,感觉挺好

回复 | 0
作者:hare 留言时间:2022-04-26 00:45:46

看了您几篇科普文章,非常佩服!还想请教,您如何看待李永乐的科普?谢谢

回复 | 0
我的名片
天蓉
注册日期: 2011-09-18
访问总量: 1,213,276 次
点击查看我的个人资料
Calendar
最新发布
· 费马大定理-最后一步
· 费马大定理-铺平道路
· 费马大定理-椭圆函数
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
分类目录
【作品目录】
· 《走近混沌》目录
· 《走近量子》目录
· 《诗谜画谜》目录
· 《傻博士的初恋》目录
· 《美国房客》目录
· 《隐身惊魂记》目录
· 《白雪之恋》:目录
【科普-走近混沌】
· 《走近混沌》-25-27-全文完
· 《走近混沌》-24-孤立子的故事
· 《走近混沌》-23-混沌到有序
· 《走近混沌》-22-再回魔鬼聚合物
· 《走近混沌》-21-萬變之不變
· 《走近混沌》-20-混沌魔鬼不穩定
· 《走近混沌》-19-混沌魔鬼的誕生
· 《走近混沌》-18-生態繁衍和混沌
· 《走近混沌》-17-混沌遊戲
· 《走近混沌》-16-三體問題及趣聞
【科普-走近量子】
· 走近量子(19)量子隐形传输(二
· 走近量子(18)量子隐形传输(一
· 走近量子(17)量子计算机
· 走近量子(16)GHZ定理-繼續
· 走近量子(15)GHZ定理
· 走近量子(14)qubit和费曼
· 走近量子(13)从纠缠态到qubit
· 走近量子(12)GHZ登场
· 走近量子(11)埃斯派克特的实验
· 走近量子(10)最後的判决
【谜语集锦3】
· 留下一串謎(詩謎+畫謎)- 44
· 留下一串謎(詩謎+畫謎)- 43
· 留下一串谜(诗谜+画谜)- 42
· 留下一串谜(诗谜+画谜)- 41
· 留下一串谜(诗谜+画谜)- 40
· 留下一串谜(诗谜+画谜)- 39
· 留下一串谜(诗谜+画谜)- 38
· 留下一串谜(诗谜+画谜)- 37
· 留下一串谜(诗谜+画谜)- 36
· 留下一串谜(诗谜+画谜)- 35
【谜语集锦2】
· 留下一串谜(诗谜+画谜)- 30
· 留下一串谜(诗谜+画谜)- 29
· 留下一串谜(诗谜+画谜)- 28
· 留下一串谜(诗谜+画谜)- 27
· 留下一串谜(诗谜+画谜)- 26
· 留下一串谜(诗谜+画谜)- 25
· 留下一串谜(诗谜+画谜)- 24
· 留下一串谜(诗谜+画谜)- 23
· 留下一串谜(诗谜+画谜)- 22
· 留下一串谜(诗谜+画谜)- 21
【谜语集锦1】
· 留下一串谜(诗谜+画谜)- 20
· 留下一串谜(诗谜+画谜)- 19
· 留下一串谜(诗谜+画谜)- 18
· 留下一串谜(诗谜+画谜)- 17
· 留下一串谜(诗谜+画谜)- 16
· 留下一串谜(诗谜+画谜)- 15
· 留下一串谜(诗谜+画谜)- 14
· 留下一串谜(诗谜+画谜)- 13
· 留下一串谜(诗谜+画谜)- 12
· 留下一串谜(诗谜+画谜)- 11
【谜语集锦】
· 留下一串谜(诗谜+画谜)- 10
· 留下一串谜(诗谜+画谜)- 9
· 留下一串谜(诗谜+画谜)- 8
· 留下一串谜(诗谜+画谜)- 7
· 留下一串谜(诗谜+画谜)- 6
· 留下一串谜(诗谜+画谜)- 5
· 留下一串谜(诗谜+画谜)- 4
· 留下一串谜(诗谜+画谜)- 3
· 留下一串谜(诗谜+画谜)- 2
· 留下一串谜(诗谜+画谜)- 1
【傻博士的初恋46-50】
· 傻博士的初恋-50-尾声
· 傻博士的初恋-49-水落石出
· 傻博士的初恋-48-谋杀案?
· 傻博士的初恋-47-当个女侦探
· 傻博士的初恋-46-跟踪依娃
【傻博士的初恋:41-45】
· 傻博士的初恋-45-疑惑
· 傻博士的初恋-44-分手?
· 傻博士的初恋-43-闯荡哈林区
· 傻博士的初恋-42-平安夜(2)
· 傻博士的初恋-41-平安夜(1)
【傻博士的初恋36-40】
· 傻博士的初恋-40-回家
· 傻博士的初恋-39-感恩节(2)
· 傻博士的初恋-38-感恩节(1)
· 傻博士的初恋-37-古怪的量子
· 傻博士的初恋-36-罗德的忠告
【傻博士的初恋31-35】
· 傻博士的初恋-35-万圣节(2)
· 傻博士的初恋-34-万圣节(1)
· 傻博士的初恋-33-工作狂
· 傻博士的初恋-32-如此先进企业
· 傻博士的初恋-31-强词夺理
【“傻”博士的初恋:26-30】
· 傻博士的初恋-30-大金失踪
· 傻博士的初恋-29-恋爱的学问
· 傻博士的初恋-28-911(2)
· 傻博士的初恋-27-911(1)
· 傻博士的初恋-26-贾杨金
【“傻”博士的初恋:21-25】
· 傻博士的初恋-25-人脑和电脑
· 傻博士的初恋-24-硅谷看房子
· 傻博士的初恋-23-经济泡沫
· 傻博士的初恋-22-明娜来访
· 傻博士的初恋 -21- 亲密接触
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -20- 搬家
· 傻博士的初恋 -19- 罗德的故事
· 傻博士的初恋 -18- 糊涂有理
· 傻博士的初恋 -17- 糊涂博士
· 傻博士的初恋 -16- 疯涨的股票
【“傻”博士的初恋:11-15】
· 傻博士的初恋 -15- “生日快乐!
· 傻博士的初恋 -14- 过生日
· 傻博士的初恋13- 父母来访
· 傻博士的初恋-12- “大袍子”博士
· 傻博士的初恋-11- 有惊无险
【“傻”博士的初恋:6-10】
· 傻博士的初恋-10- 太浩湖之旅
· 傻博士的初恋-9- 简单和复杂
· 傻博士的初恋-8- 笑阿姨
· 傻博士的初恋-7- 情人节
· 傻博士的初恋-6-大忙人
【“傻”博士的初恋:1-5】
· 傻博士的初恋-5-“萨沙”和“妮妮”
· 傻博士的初恋-4-合作伙伴?
· 傻博士的初恋-3-第一次约会
· 傻博士的初恋-2-棕榈大道
· 傻博士的初恋-1-初遇
· 傻博士的初恋:引子
【《美国房客》尾声】
· 《美国房客》- 35 经悠悠数月,
【《美国房客》生死游戏】
· 《美国房客》- 34 感生命有限,
· 《美国房客》- 33 知祸福相依,
· 《美国房客》- 32 忆德州旧识,
· 《美国房客》- 31 急自强有危,
· 《美国房客》- 30 烧藏宝真图,
· 《美国房客》- 29 欲引蛇出洞,
· 《美国房客》- 28 映院中人影,
· 《美国房客》- 27 破车祸真相,
· 《美国房客》- 26 听教授感慨,
· 《美国房客》- 25 记梦中影像,
【《美国房客》游子百态】
· 《美国房客》- 15 忆往事成烟,
· 《美国房客》- 14 解诗词秘密,
· 《美国房客》- 13 气弟弟不肖,
· 《美国房客》- 12 喜赴美寻梦,
· 《美国房客》- 11 厌名利薰心,
· 《美国房客》- 10 记车祸当日,
· 《美国房客》- 9 述加州之行,触
· 《美国房客》- 8 疑泰州宝藏,惑
· 《美国房客》- 7 用键盘交流,集
· 《美国房客》- 6 叙文革旧事,传
【《美国房客》楔子】
· 《美国房客》楔子-2 人物诗谜
· 《美国房客》楔子-1 一则新闻
【长篇悬疑小说《美国房客》】
【《隐身惊魂记》-独立节惊魂】
· 独立节惊魂-尾声
· 独立节惊魂-82-隐蛇现形白宫惊魂
· 独立节惊魂-81-遥控实现杀人游戏
· 独立节惊魂-80-毒蛇消失总监着急
· 独立节惊魂-79- 欢乐华府严阵以
· 独立节惊魂-78- 阳光谷城小虎遇
· 独立节惊魂-77-节日凌晨无人能眠
· 独立节惊魂-76-高人驾车出手相救
【《隐身惊魂记》-矽谷追逐】
· 矽谷追逐-75-隐身男孩被人跟踪
· 矽谷追逐-74-红木城中隐人现形
· 矽谷追逐-73-隐人出没捉狭添乱
· 矽谷追逐-72-戈尔自杀拉曼被捕
· 矽谷追逐-71-身陷囹圄处境危急
· 矽谷追逐-70-月黑风高事故不断
· 矽谷追逐-69-野狼活动毒蛇突现
· 矽谷追逐-68-天灾可怕人心奸诈
· 矽谷追逐-67-狡猾政客阴谋小人
· 矽谷追逐-66-精心策划设置圈套
【《隐身惊魂记》-阴谋政治】
· 阴谋政治-61-驶离华府何去何从
· 阴谋政治-60-警商勾结顾客遭殃
· 阴谋政治-59-欲破阴谋逃避逮捕
· 阴谋政治-58-隐侠计划云游湾区
· 阴谋政治-57-别墅取车拉曼落网
· 阴谋政治-56-流浪小子守株待兔
· 阴谋政治-55-上司策划逮捕迈克
· 阴谋政治-54-两月前的重大案件
· 阴谋政治-53-分析案情迷雾重重
· 阴谋政治-52-跟踪绅士疑点多多
【长篇科幻小说《隐身惊魂记》】
· 脑电波之谜-40-急中生智无辜遇难
· 脑电波之谜-39-藏身遁形纽约历险
· 脑电波之谜-38-情况复杂小虎不见
· 脑电波之谜-37-人性兽性互纠互缠
· 脑电波之谜-36-隐人胡闹大使剧院
· 脑电波之谜-35-历历在目十年之前
· 脑电波之谜-34-拉曼失踪线索中断
· 脑电波之谜-33-切身体会隐身之趣
· 《隐身惊魂记》目录
· 脑电波之谜-32 别墅忽见往日同学
【随笔】
【科普】
· 费马大定理-最后一步
· 费马大定理-铺平道路
· 费马大定理-椭圆函数
· 费马大定理-椭圆曲线和“群”
· 费马大定理-模形式
· 费马大定理-椭圆曲线
· 费马大定理-数学公主
· 费马大定理-欧拉猜想
· 费马大定理-这个证明包你懂!
· 费马大定理-救了他的命
【诗词】
· 《露珠》
· 《小花》
· 《激流》
· 《团聚》
· 《三叠泉》
· 《咏荷》
【小说】
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:2-《二十六年后…
· 《白雪之恋》:1-56
· 《白雪之恋》:1-55
· 《白雪之恋》:1-54
· 《白雪之恋》:1-53
· 《白雪之恋》:1-52
· 《白雪之恋》:1-51
存档目录
2024-12-03 - 2024-12-06
2024-11-17 - 2024-11-23
2024-10-16 - 2024-10-28
2024-09-07 - 2024-09-07
2024-08-27 - 2024-08-30
2024-06-04 - 2024-06-26
2024-05-01 - 2024-05-29
2024-04-03 - 2024-04-23
2024-03-07 - 2024-03-28
2024-02-12 - 2024-02-20
2024-01-08 - 2024-01-23
2023-12-09 - 2023-12-19
2023-11-08 - 2023-11-27
2023-06-10 - 2023-06-10
2023-04-08 - 2023-04-08
2022-11-07 - 2022-11-07
2022-10-09 - 2022-10-11
2022-09-12 - 2022-09-12
2022-07-09 - 2022-07-09
2022-06-08 - 2022-06-08
2022-05-26 - 2022-05-26
2022-04-25 - 2022-04-25
2022-03-10 - 2022-03-30
2022-02-03 - 2022-02-28
2022-01-07 - 2022-01-17
2021-12-16 - 2021-12-29
2013-07-08 - 2013-07-08
2013-02-07 - 2013-02-07
2013-01-05 - 2013-01-26
2012-12-05 - 2012-12-26
2012-11-04 - 2012-11-25
2012-10-01 - 2012-10-31
2012-09-02 - 2012-09-27
2012-08-01 - 2012-08-30
2012-07-03 - 2012-07-31
2012-06-02 - 2012-06-30
2012-05-01 - 2012-05-31
2012-04-01 - 2012-04-30
2012-03-01 - 2012-03-31
2012-02-01 - 2012-02-29
2012-01-01 - 2012-01-30
2011-12-01 - 2011-12-31
2011-11-01 - 2011-11-30
2011-10-19 - 2011-10-31
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.