设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
 
中国现代哲学家学会  
发现自己的绝对力量,它会震惊世界  
网络日志正文
Boundary Crossing Problems in Western Logic 2025-04-18 06:21:02

Boundary Paradoxes in Western Logic through the Lens of Instancology


Throughout the history of Western logic and mathematics, several paradoxes and incompleteness results have emerged that challenge the foundations of reason and formal systems. Instancology interprets these paradoxes not merely as technical glitches, but as profound manifestations of boundary-crossing violations between distinct ontological categories: RR (Relatively Relative), RA (Relatively Absolute), AR (Absolutely Relative), and AA (Absolutely Absolute).


This appendix outlines how key paradoxes and theorems—namely, Russell's Paradox, Gödel's Incompleteness Theorem, and Turing's Halting Problem—are symptomatic of improper boundary-crossing attempts, especially the misuse of RR tools to grasp RA or even AA truths.



---


1. Russell's Paradox: The Fallacy of Self-Totalizing Systems


Statement: Russell's Paradox arises from the definition of a set that contains all sets that do not contain themselves. The contradiction stems from the question: Does this set contain itself?


Instancological Diagnosis:


This is a classic case of RR (formal language, symbolic logic) attempting to simulate or construct Wholeness from within its own symbolic scope.


According to Instancology, an instance (Whole) must precede the symbolic or partitive description. RR cannot self-construct Wholeness without collapsing.



Violation: RR → AA / RA boundary crossing.

The paradox reveals the failure of trying to contain the Whole (RA or AA) within a part-based system (RR).



---


2. Gödel's Incompleteness Theorem: Limits of Formal Consistency


Statement: Any consistent formal system capable of expressing arithmetic cannot prove all truths within its own system. There will always be true statements that are unprovable from within.


Instancological Diagnosis:


Gödel proves that formal systems (RR) cannot fully capture arithmetic truths (RA).


The unprovable yet true propositions show that RA instances exceed the symbolic tools used to represent them.


Gödel exposes the illusion of closure and completeness when using RR to try and systematize RA.



Violation: RR → RA boundary crossing.

It is not merely a mathematical result—it affirms that truth transcends proof, and meaning cannot be collapsed into formalism.



---


3. Turing's Halting Problem: Incomputability as a Structural Limit


Statement: There is no general algorithm that can determine whether every possible program halts or runs forever.


Instancological Diagnosis:


The Halting Problem arises when attempting to control or totalize all symbolic processes (RR) with a universal symbolic algorithm (also RR).


However, not all instance-behaviors can be enclosed within a meta-system—especially those involving recursive or open-ended computation.



Violation: RR → RR (reflexive) boundary collapse.

This is a case of RR trying to master itself, mistaking computation for containment of essence. Instancology sees this as a reminder: instances are not reducible to process or recursion.



---


Concluding Insight


These paradoxes are not anomalies of logic but epistemological warnings. They signal the danger of crossing ontological boundaries uncritically:


RR tools cannot represent or totalize RA truths.


RA structures cannot substitute the unspeakable background of AA.


Wholeness (Instance) cannot be reconstructed from fragmentation.



Instancology offers a resolution not by fixing the paradox within the system, but by showing the proper relational boundary of each category. This reframing re-establishes logical clarity and ontological humility—a principle Western philosophy has long needed.



---


Suggested Reading:


Gödel, Kurt. On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1931)


Russell, Bertrand. The Principles of Mathematics (1903)


Turing, Alan. On Computable Numbers, with an Application to the Entscheidungsproblem (1936)



Cross-reference: See also chapters on RA logic and the Unspeakable AA in Instancology by Wade Y. Dong



浏览(5157) (0) 评论(0)
发表评论
我的名片
中国现代哲学家学会
注册日期: 2015-01-10
访问总量: 1,500,495 次
点击查看我的个人资料
Calendar
最新发布
· 《范式哲学》对中国思想史与中国
· 国人为什么爱“装”?
· Cognitive Progress as Directio
· 范式体系对哲学的关系,相当于熵
· AA in the History of Philosoph
· Why WuXing Is Not Trainable —
· 《范式哲学》属于谁-万维,中国
友好链接
· Rabbit:Stinger 的博客
· hare:hare的博客
· bunny2:bunny2的博客
· microsoftbug:microsoftbug的博
· InstanceTV:InstanceTV的博客
分类目录
【Mingcheng】
【心言】
· Free book: The Ontology of Nat
· 同学会会长关于哲学研究的对话(2
· 同学会会长关于哲学研究的对话
· 天下大势
· 爱者共天地
· 死亡万岁 -- 清明节留下的一缕思
· 重发: 哲学之爱从何而来?
· [中哲会]新程序启动说明
· 哲学之爱从何而来?
【电视直播】
· USA-China in Depth (1)
· 《中哲会》TV直播频道
【政治】
· 毛泽东的“民族解放”神话:专制的
· 为什么中国人反驳西方理论的观点
· 台湾立足基础-造原子弹
· 中国人缺乏理性会有什么后果?
· 您愿意选谁作为第一届“网络中华
· 中国未来的社会结构(2)
· 我建议在万维上进行一次中国未来
· 川普现在唯一的愿望是当个“前总
· 范例党党员章程
· 谈中国民运的战略与策略(范例党
【传统文化】
· 国学与西方思想的区别是狗尾与貂
· 必须立刻弹劾川普!
· 没文化的鬼子
· 新年伊始中国“十马奔腾”
· 扯住教皇不放—今天世界哪个国家
· 为什么中国读书人很难摆脱中国文
· 中国人的“感性逻辑”
· 也谈“中国知识分子堕落”
· "现在打中国,输赢无悬念&q
· 说!“你脱,还是不脱?!”
【深山兰】
· 从二例看中国古代的思维方式
【其它】
· 语言与国家:俞兴文明进步论的学
· 胡杰纪录片:无人区画展
· 美国为什么伟大?- 只因为一个充
· 六四用一句话说
· 华人应该如何与西方人交往?(1)
· 中国人”也”是同欧洲人一样的理性
· 万维有太多哲学误导!
· 一月二十号白宫会发生哪一幕?
· 中国问题:文字
· 用事实驳斥中共关于朝鲜战争的谎
【比较政策】
· 阶级分化的复苏
【一般】
· 中国为什么不适合搞民主?
· 伯克利新名言:赢了-就是不认输
· 什么是今日美国社会的根本问题?
· 美国人打输了还是朋友,中国人..
· 川普—你为什么如此愚蠢?!
· 压垮川普的最后一根稻草-乔治亚
· 看来川普...
· 中国对中国人的影响
· 中国文化在哪些方面体现了幼稚?
· 对中国人“批判”的看法 - 兼答金
【远方】
· 介绍一下荒诞论:远方的孤独
【何岸泉】
· 辩证法与放屁(ZT)
【哲学资料】
· 为相对主义辩护
· Instancology for Philosophers-
· Ten American Philosophers
· (1)马克思和恩格思的“唯物主义”
· Phenomenology of Spirit, Chapt
· 德国政府决定:在全球范围对使用
· 为什么人需要哲学?
· ZT:Rights
· Is your pet psychic?
· Twin Telepathy: Is there a ‘Sp
【中军】
· 关于精神的问题
· 思维创新的哲学理解(下)
· 思维创新的哲学理解(上)
· 人生究竟是什么
· 悟性创新的本性及闪失
· 悟性的创新及孩子的例证
· 怎样进行讨论
· 文字、语音、语义与创新
· 哲学研究能干点儿啥
· 中国缺少创新的各种看法
【徒子】
· 《范式哲学》对中国思想史与中国
· 国人为什么爱“装”?
· Cognitive Progress as Directio
· 范式体系对哲学的关系,相当于熵
· AA in the History of Philosoph
· Why WuXing Is Not Trainable —
· 《范式哲学》属于谁-万维,中国
· Why Reason Cannot Reach AA — a
· 为什么中国作不了世界警察?
· 为什么哲学能够抵达 AA,而科学
【嘎子】
· 关于丘成桐的讲话的评论
· 已经转到嘎子博客
· <二> 原本打算单独写一篇
· 哲学同真理的关系以及辩证法的本
【几子】
· What Will Happen to President
· 随想:可口可乐
· 分形与卦像:漫话混沌,科学,与
· 浅议科学实证主义
存档目录
2026-01-01 - 2026-01-13
2025-12-01 - 2025-12-31
2025-11-01 - 2025-11-30
2025-10-02 - 2025-10-31
2025-09-01 - 2025-09-29
2025-08-03 - 2025-08-28
2025-07-01 - 2025-07-29
2025-06-01 - 2025-06-26
2025-05-01 - 2025-05-30
2025-04-01 - 2025-04-30
2025-03-06 - 2025-03-31
2025-02-04 - 2025-02-17
2025-01-23 - 2025-01-23
2024-11-10 - 2024-11-10
2024-08-21 - 2024-08-21
2024-07-28 - 2024-07-28
2024-05-13 - 2024-05-15
2024-03-13 - 2024-03-18
2024-02-06 - 2024-02-06
2024-01-02 - 2024-01-31
2023-12-22 - 2023-12-31
2023-11-05 - 2023-11-19
2023-10-03 - 2023-10-29
2023-09-08 - 2023-09-25
2023-08-12 - 2023-08-20
2023-07-15 - 2023-07-15
2023-06-12 - 2023-06-12
2023-02-02 - 2023-02-27
2023-01-01 - 2023-01-24
2022-12-06 - 2022-12-31
2022-11-30 - 2022-11-30
2022-09-04 - 2022-09-25
2022-08-01 - 2022-08-22
2022-07-01 - 2022-07-21
2022-06-04 - 2022-06-27
2021-03-01 - 2021-03-26
2021-02-02 - 2021-02-26
2021-01-01 - 2021-01-31
2020-12-16 - 2020-12-26
2020-11-03 - 2020-11-27
2020-10-02 - 2020-10-31
2020-09-03 - 2020-09-21
2020-08-07 - 2020-08-26
2020-07-02 - 2020-07-24
2020-06-06 - 2020-06-08
2020-05-01 - 2020-05-12
2020-04-02 - 2020-04-27
2020-03-01 - 2020-03-31
2020-02-04 - 2020-02-25
2020-01-01 - 2020-01-31
2019-12-01 - 2019-12-29
2019-11-02 - 2019-11-17
2019-10-09 - 2019-10-14
2019-09-01 - 2019-09-08
2019-08-01 - 2019-08-24
2019-07-01 - 2019-07-27
2019-06-01 - 2019-06-30
2019-05-04 - 2019-05-29
2019-04-01 - 2019-04-30
2018-01-01 - 2018-01-02
2016-04-14 - 2016-04-20
2015-07-02 - 2015-07-24
2015-06-02 - 2015-06-28
2015-05-01 - 2015-05-31
2015-04-01 - 2015-04-29
2015-03-01 - 2015-03-26
2015-02-01 - 2015-02-28
2015-01-10 - 2015-01-31
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2026. Creaders.NET. All Rights Reserved.