设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
     
  慕容青草的博客
  哲学与信仰
我的名片
慕容青草
来自: ny
注册日期: 2007-08-15
访问总量: 1,836,174 次
点击查看我的个人资料
Calendar
我的公告栏
拆房
如何锁定人类科学
20世纪物理学
复杂情势下之最佳优先考虑
成功与别人的帮助
对抗真理的结果
旧房子的哲学
拔枯树
站与踩
哲学是公开的密码
普朗克论科学真理之传播
黑格尔论学习的过程
黑格尔论逻辑
自勉
欢迎交流
最新发布
· 这个网军真叫牛
· 网络时代的未来人之幻象
· 一次挤牙膏式的听证会
· 哲学无穷大与数学无穷大
· 病好了
· 有冇后生仔愿去拆掉那个阁楼?
· 排除正确答案之答案
友好链接
· 马甲:马甲的博客
分类目录
【神学】
· 灵战没有民主之说
· 我的Windows被重装了?
· 2023-5-23 晨读经
· 领悟圣经的新亮点
· 小行星带---悬在地球之上的达摩
· Milvian桥战役---基督教在罗马兴
· 牧师的用功
· 平行世界理论引发的神学思考
【笑一笑】
· 24届世界哲学大会的专哲发言的趣
· 笑一笑
· 金发女郎的笑话
【信仰】
· 莫非因为这点而真被锁定了?
· 灵战没有民主之说
· 我的Windows被重装了?
· 2023-5-23 晨读经
· 铁杆相对论者之动摇。。。。
· 机会欲望之陷阱
· 领悟圣经的新亮点
· 为什么牧师的信仰常常比不上很多
· 如何制作UFO?(How to build a
· 上帝是真理
【其它】
· 给Elon Musk提一个建议
· 看来确实小题大做了
· 链接
· 文脸斗魔记
· 链接
· 有关空气燃烧认知作战的又一次破
· A Coming Worse Pollution?
· 氮气燃烧?
· 一段侦探剧般的经历
· 莫非因为这点而真被锁定了?
【心理学】
· 诡辩与洗脑
· 破罐子破摔---心理震撼症候群?
· 中国已造出飞碟?
· 人类果真被集体催眠了?
· 懒惰,骄傲的懒惰,以及无知
· 梦之语言
· 梦之逻辑
· 禁忌与脾气
· 人生中的次坏游戏
· 两种不同的放下---信仰篇
【哲学】
· 这个网军真叫牛
· 网络时代的未来人之幻象
· 一次挤牙膏式的听证会
· 哲学无穷大与数学无穷大
· 病好了
· 有冇后生仔愿去拆掉那个阁楼?
· 排除正确答案之答案
· 物理学界将要面临的一大尴尬
· 物理界再一次展示奇怪的逻辑
· 坚持错误是走向反动的一个关键点
【中国文化】
· Alcubierre和罗贯中---瞻前还是
· State --- 中华文化中缺少的一个
· 解译《道德经》需要理性分析
· 中国古代到底有没有科学?
· 鲁迅之错
· 《道德经》与清静无为
· Tao Te Ching--The most misunde
· 聊聊贸易战
· 中国会改变颜色吗?
· 中国史与汉史
存档目录
11/01/2024 - 11/30/2024
10/01/2024 - 10/31/2024
09/01/2024 - 09/30/2024
08/01/2024 - 08/31/2024
07/01/2024 - 07/31/2024
06/01/2024 - 06/30/2024
05/01/2024 - 05/31/2024
04/01/2024 - 04/30/2024
03/01/2024 - 03/31/2024
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
10/01/2023 - 10/31/2023
09/01/2023 - 09/30/2023
08/01/2023 - 08/31/2023
07/01/2023 - 07/31/2023
06/01/2023 - 06/30/2023
05/01/2023 - 05/31/2023
04/01/2023 - 04/30/2023
03/01/2023 - 03/31/2023
02/01/2023 - 02/28/2023
01/01/2023 - 01/31/2023
12/01/2022 - 12/31/2022
11/01/2022 - 11/30/2022
10/01/2022 - 10/31/2022
09/01/2022 - 09/30/2022
08/01/2022 - 08/31/2022
07/01/2022 - 07/31/2022
06/01/2022 - 06/30/2022
05/01/2022 - 05/31/2022
04/01/2022 - 04/30/2022
03/01/2022 - 03/31/2022
02/01/2022 - 02/28/2022
01/01/2022 - 01/31/2022
12/01/2021 - 12/31/2021
11/01/2021 - 11/30/2021
10/01/2021 - 10/31/2021
09/01/2021 - 09/30/2021
08/01/2021 - 08/31/2021
07/01/2021 - 07/31/2021
06/01/2021 - 06/30/2021
05/01/2021 - 05/31/2021
04/01/2021 - 04/30/2021
03/01/2021 - 03/31/2021
02/01/2021 - 02/28/2021
01/01/2021 - 01/31/2021
12/01/2020 - 12/31/2020
11/01/2020 - 11/30/2020
10/01/2020 - 10/31/2020
09/01/2020 - 09/30/2020
08/01/2020 - 08/31/2020
07/01/2020 - 07/31/2020
06/01/2020 - 06/30/2020
05/01/2020 - 05/31/2020
04/01/2020 - 04/30/2020
03/01/2020 - 03/31/2020
02/01/2020 - 02/29/2020
01/01/2020 - 01/31/2020
12/01/2019 - 12/31/2019
11/01/2019 - 11/30/2019
10/01/2019 - 10/31/2019
09/01/2019 - 09/30/2019
08/01/2019 - 08/31/2019
07/01/2019 - 07/31/2019
06/01/2019 - 06/30/2019
05/01/2019 - 05/31/2019
04/01/2019 - 04/30/2019
03/01/2019 - 03/31/2019
02/01/2019 - 02/28/2019
01/01/2019 - 01/31/2019
12/01/2018 - 12/31/2018
11/01/2018 - 11/30/2018
10/01/2018 - 10/31/2018
09/01/2018 - 09/30/2018
08/01/2018 - 08/31/2018
07/01/2018 - 07/31/2018
06/01/2018 - 06/30/2018
05/01/2018 - 05/31/2018
04/01/2018 - 04/30/2018
03/01/2018 - 03/31/2018
02/01/2018 - 02/28/2018
01/01/2018 - 01/31/2018
12/01/2017 - 12/31/2017
11/01/2017 - 11/30/2017
10/01/2017 - 10/31/2017
09/01/2017 - 09/30/2017
08/01/2017 - 08/31/2017
07/01/2017 - 07/31/2017
06/01/2017 - 06/30/2017
05/01/2017 - 05/31/2017
04/01/2017 - 04/30/2017
03/01/2017 - 03/31/2017
02/01/2017 - 02/28/2017
01/01/2017 - 01/31/2017
12/01/2016 - 12/31/2016
11/01/2016 - 11/30/2016
10/01/2016 - 10/31/2016
09/01/2016 - 09/30/2016
08/01/2016 - 08/31/2016
07/01/2016 - 07/31/2016
06/01/2016 - 06/30/2016
05/01/2016 - 05/31/2016
04/01/2016 - 04/30/2016
03/01/2016 - 03/31/2016
02/01/2016 - 02/29/2016
01/01/2016 - 01/31/2016
12/01/2015 - 12/31/2015
11/01/2015 - 11/30/2015
10/01/2015 - 10/31/2015
09/01/2015 - 09/30/2015
07/01/2015 - 07/31/2015
06/01/2015 - 06/30/2015
05/01/2015 - 05/31/2015
04/01/2015 - 04/30/2015
03/01/2015 - 03/31/2015
02/01/2015 - 02/28/2015
01/01/2015 - 01/31/2015
12/01/2014 - 12/31/2014
11/01/2014 - 11/30/2014
10/01/2014 - 10/31/2014
09/01/2014 - 09/30/2014
08/01/2014 - 08/31/2014
07/01/2014 - 07/31/2014
06/01/2014 - 06/30/2014
05/01/2014 - 05/31/2014
04/01/2014 - 04/30/2014
03/01/2014 - 03/31/2014
02/01/2014 - 02/28/2014
01/01/2014 - 01/31/2014
12/01/2013 - 12/31/2013
11/01/2013 - 11/30/2013
10/01/2013 - 10/31/2013
09/01/2013 - 09/30/2013
08/01/2013 - 08/31/2013
07/01/2013 - 07/31/2013
06/01/2013 - 06/30/2013
05/01/2013 - 05/31/2013
04/01/2013 - 04/30/2013
03/01/2013 - 03/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
12/01/2012 - 12/31/2012
11/01/2012 - 11/30/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
08/01/2012 - 08/31/2012
07/01/2012 - 07/31/2012
06/01/2012 - 06/30/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
12/01/2011 - 12/31/2011
11/01/2011 - 11/30/2011
10/01/2011 - 10/31/2011
09/01/2011 - 09/30/2011
08/01/2011 - 08/31/2011
07/01/2011 - 07/31/2011
06/01/2011 - 06/30/2011
05/01/2011 - 05/31/2011
04/01/2011 - 04/30/2011
03/01/2011 - 03/31/2011
02/01/2011 - 02/28/2011
01/01/2011 - 01/31/2011
11/01/2010 - 11/30/2010
10/01/2010 - 10/31/2010
09/01/2010 - 09/30/2010
08/01/2010 - 08/31/2010
07/01/2010 - 07/31/2010
06/01/2010 - 06/30/2010
05/01/2010 - 05/31/2010
04/01/2010 - 04/30/2010
03/01/2010 - 03/31/2010
02/01/2010 - 02/28/2010
01/01/2010 - 01/31/2010
12/01/2009 - 12/31/2009
11/01/2009 - 11/30/2009
06/01/2009 - 06/30/2009
05/01/2009 - 05/31/2009
02/01/2009 - 02/28/2009
01/01/2009 - 01/31/2009
12/01/2008 - 12/31/2008
11/01/2008 - 11/30/2008
10/01/2008 - 10/31/2008
09/01/2008 - 09/30/2008
08/01/2008 - 08/31/2008
07/01/2008 - 07/31/2008
06/01/2008 - 06/30/2008
05/01/2008 - 05/31/2008
04/01/2008 - 04/30/2008
03/01/2008 - 03/31/2008
02/01/2008 - 02/29/2008
01/01/2008 - 01/31/2008
11/01/2007 - 11/30/2007
10/01/2007 - 10/31/2007
09/01/2007 - 09/30/2007
08/01/2007 - 08/31/2007
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
探秘薛定谔方程的推导
   

戴榕菁

1.  关于标题的解释

原本想用“揭密薛定谔方程的推导”为本文的标题,意思是想要揭示薛定谔在他的诺贝尔获奖文章中所给出的对他的那个后来成为量子力学之基础的方程的推导之真相。后来转念一想,既然人家自己在获奖文章中没有明说,纵然我这里将要演示的确实是薛定谔当初的思路,我也不能用“揭密”这个词,因为要说揭一个与人家本人的陈述相悖的密多少是带有对当事人不恭敬的味道,更何况这里的当事人早已不仅仅是薛定谔本人那么简单了,至少诺贝尔委员会也应该算是当事人吧,说薛定谔方程是推导不出来的但却真实反映自然的费曼也一定算是当事人吧,再往大了说,1926年后的整个20世纪物理学界都应该算是当事人吧。所以,我决定用“探秘”而不是“揭密”。

说到这里,且不说我所揭的或探的正题是什么,有读者可能已经对上面提到的“揭密”一词感到别扭了,因为按照中文词典上介绍的一般用法,人们会说“揭秘”而不是“揭密”。不过我上面之所以提到“揭密”而不是“揭秘”的原因也正是我决定用“探秘”而不是“揭密”的原因------虽然“秘”与“密”两个字合在一起组成的“秘密”指的是不为人知的事,但“秘”指的是自然的,而“密”指的人们刻意为之的。我原本想用“揭密”正是因为我隐隐地感觉这背后似乎有作者刻意为之的影子。。。。这种刻意为之的影子才是近一百年后我们有必要讨论它的真正意义;但也正是“密”字所带有的刻意为之的意思让我感到“揭密”一词过于带有诛心的味道了。人家费曼说的多圆滑呀:薛定谔方程是不可能按照任何一个已知的知识推导出来的,但它是正确的。尽管我最多只能在近似的意义上接受费曼所下的“正确”的论断而无法将他的论断照单全收,我也还是觉得应该参考一下这位以说出“shut up and calculate”这句明显反哲学的武断的名言著称的费曼在评论薛定谔时表现出来的语言技巧呀。

但是,如果让我将“揭密”改为“揭秘”我又实在改不下去,因为那就不是技巧的问题了而是要我承认这背后一定不存在当事者刻意而为的问题了。就算我没有资格断定当事者一定是刻意而为,我也同样没有资格断定他一定就没有刻意而为。所以最后选定“探秘”这个词。既然是“探”,那么到底是自然的还是当事人刻意而为的就不重要了。尽管在下面的讨论中为了方便我仍要假设我知道薛定谔的某些做法的目的,读者尽可以把我的讨论看成是在说李定谔或杨定谔而不是薛定谔。

 

2. 问题的背景

十多天前我在“戏剧性的薛定谔”【[1]】一文中对薛定谔在他获得诺贝尔奖的那篇文章【[2]】中所介绍的他的举世著名的方程之推导过程进行了讨论。在讨论的过程中有一个细节特别引起了我的注意,那就是薛文中的第(13)式:

image.png

这(13)式明显就是著名的德布罗意获得诺贝尔奖的波长公式。但问题是:正如薛定谔在他的文章明确地宣称的他在推导过程没有用到相对论,而如我在2023[3],[4]】已经一步步地详细指出的,假如德布罗意当初没有用到相对论,那么他的波长公式就不会是如上面所示的薛文的(13)式的结果,而会是:

λ = 2(v2/c2) h/p = 2(v2/c2) h/mv                         (*)

也就是说,假如薛定谔的推导是在逻辑上严格的而且没有用到相对论,他根本就不可能得出上面的(13)式,而应该得出上面的(*)式

不仅如此,我们还可以注意到薛文的(11)式是:

image.png

这(11)式正是著名的爱因斯坦-普朗克光能公式,是爱因斯坦获得诺贝尔奖的公式。

薛文声称该文的(11)和(13)都是从下式按照正常的逻辑推导自然地得出的:

image.png

但是,如我上面提到的,他居然能在没有用到相对论的前提上得出只有用到相对论才能得到的结果,这让我感到他的那个所谓的推导不是从那个连单个质点在引力场中的自由落体运动都无法满足的(3)式(参见【1】)出发的,他应该是从在他的那个年代已经非常著名的(11)式和(13)式出发倒着推出那个没有人能正常得出的(3),然后再从(3)式出发貌似正常推导地叙述到(13)式,然后再接着进行他后面的讨论的

 

3. 倒推薛文的出发方程(3

那么我们来看看是否可以通过一般的科研的手段来从(13)及(11)推出(3)呢。

首先,假如我们有一个波函数如薛文的(9)式表示的为:

image.png那么我们从(9)式可以直观地看出薛文中表达频率ν的(10)式以及薛文中极为关键的(4)式:

image.png

image.png

在(10)中,我们只要令K = h/2π,就可以如薛定谔在文中宣称的那样很自然地得到上面的(11)式了,然后再用(11)式和下面将要得出的(6)就可以得到(13)式了。

所以,从(11)式和(13)式出发,只要对正弦函数的特点以及课本上对于求解哈密尔顿偏微分方程的标准形式有所了解,就可以想到去尝试用(9)式作为Peter Debye教授在薛定谔所做的德布罗意波的讲座上要求薛定谔得出的波动方程【[5]】的解。

但另一方面,从粒子动能的基本表达式image.png出发,并假设E为总能量,V为势能,m为质量,我们可以得到薛文中的(8)式:

image.png

在接下来的一步中我们可以毫无逻辑地假设:

image.png

image.png

同样我们也可以写出关于pypz的类似的表达式。

上面的(2)与(7)式都是薛文中的等式,但显然我们由(2)能够合逻辑地得出的应该是

W/∂x = m - ∂V/∂x + 常数,

而不是上面的(7)。但薛定谔就愣是既给出了(2)式又写出了(7)式,并声称这是众所周知的,而诺贝尔奖委员会看来也okay,所以我才在上面说“在接下来的一步中我们可以毫无逻辑地假设”。

另外,如我在【1】中指出的,薛文中给出的上面(4)式原本是教科书上求解哈密尔顿偏微分方程的标准解形式,只不过作为一般的数学方程,E并没有特殊的意义。薛定谔将(4)作为他的那个谁也推不出来的(3)式的解时有这样两个基本的问题:

1 薛定谔将E称为总能量,是一个常数,Sx, y, z的函数。但问题是:如果E是总能量,那么我们应该有E = T + V,从(4)我们就应该有:W/∂t = ˗ (T + V )。但是,根据(2)我们却有W/∂t = T - V

2尽管(4)是哈密尔顿偏微分方程的标准解形式而且(3)的解也确实可以表达成(4)的形式,但这丝毫不能说明(3)就是标准的哈密尔顿偏微分方程,更不能说明(3)可以用来求解诸如单个质点在重力场中的自由落体运动的问题。

但不管怎么说,用(4)式和(9)式我们可以得出(11)和(13);相应地,上面由(11)和(13)反向猜出(4)式和(9)式也属于包括物理学在内的科学研究中常有的试解的方法,没什么大毛病

在承认(4)式中的E就是总能量的前提下,由(4)和(7)我们可以推导出那个被薛定谔称作是哈密尔顿偏微分方程但实际并不是哈密尔顿偏微分方程而且没人能给出其真正推导的(3)式来。

接下来,因为在任意时刻t我们都有 |grad W|2 = (∂W/∂x)2 + (∂W/∂y)2 + (∂W/∂z)2,所以(3)可以被改写为:

∂W/∂t + |grad W|2 /2m + V(x,y,z) = 0,

而由(4)我们可以得到:

∂W/∂t = -E

将上面两个式子结合一下便得到薛文中的(5)式

image.png

5)在薛文中是非常关键的一个式子。薛定谔正是用(5)来将粒子动力学与波动联系在一起的。接下来的一步是重复薛定谔的(正确)叙述:

对于任意一个给定的时刻t,空间中的任意一个函数W可以表达为一组其值为W的值(例如W0)的曲面。但另一方面,我们可以从W0开始任意一组其值为W的空间曲面来得到(5)式的解。这是因为我们只要假设W0的某一边的W值为正,在W0上的这一边的每一点的法线上取长度为:

image.png

这样得到的所有的点的值显然是W0+dW0。依次下去便可得到在给定的t瞬间的所要的整个曲面系统。

由(4)可以看出,当时间改变时,上述曲面系统是不变,只是W的值沿着曲面的法向以下面的速度传播:

image.png

这里薛定谔应该是用u = dn/dt 得出(6)的,只不过他把负号略去了,因为u只是相速度。

在得到薛文中的方程(6)之后,我们可以按照薛定谔的思路来考察普通的波动方程:

image.png

运用求解偏微分方程的最常用的变量分离法可以得到对时间变量的常微分方程(仍延用上面的ψ符号):

image.png

将上式与(6)代入(15)得到对空间的偏微分方程(仍延用同样的ψ符号):

image.png

这就是薛定谔获得诺贝尔奖的著名方程,也是作为量子力学的基础的薛定谔方程的各种版本的最基本的版本。

 

4. 讨论

1)尽管上面的推导过程既不是大家所熟悉的老师上课演示的推导方式也不是任何一门理科考试中所允许的推导过程,我上面演示的各种猜解或试解却是科学研究尤其是物理学研究中非常常见的正常的手段。。。。只不过其中混杂了一些正常研究中按理说不被允许的步骤,比如薛定谔用“众所周知”这么一句话就给出那个(7)式的做法就不但不众所周知而且存在逻辑问题。

我上面的反推的目的是要向读者演示,假如站在当初薛定谔的位置上,我们如何可以根据当时已经获得诺贝尔奖的(11)和已经很著名的(13)式来完成Peter Debye教授给薛定谔提出的推导能够满足(11)式和(13)式的波动方程的任务。

我知道很多读者可能一上来会觉得上面的讨论有些吃力,但对于感兴趣并熟悉自然科学领域的研究的读者来说,我相信只要稍微花些力气还是能够从上面的讨论中看出这样的脉络:虽然在薛定谔之后没有人能够按照薛定谔的文章【2】中给出的思路推导出他文章中的(3)式来,我们却可以从我上面的讨论中比较清晰地看出薛定谔当初很有可能是从爱因斯坦已经获得诺贝尔奖的(11)式与德布罗意的已经成名的(13)式反向凑出(3)式来,然后再声称是从(3)式出发得出后面的结果的。。。。为了维护大咖薛定谔的名声,大家不妨把我这里所说的当作是在讲李定谔或杨定谔。

2)实际上,从我在文章【1】的讨论中我们已经可以看出,薛文中的(2)式的存在不但是多余的,而且还会直接导致逻辑矛盾。即便是将(2)式中的TV 换成 T + V,仍然会导致个种矛盾。

不过,经过我在【1】和本文中的讨论之后,我们可以看出薛定谔之所以需要(2)完全是为了使他的推导有一个乍看起来的合法性。他的(3)根本就不是他所声称的哈密尔顿偏微分方程,但他又不但需要(3)而且还需要将(3)称作哈密尔顿偏微分方程,因为只有这样他才能假借哈密尔顿偏微分方程在经典动力学中的名声,让读者们以为他的(3)就是能用来求解动力学问题的方程。但另一方面,他又不能将(3)改写成真正的哈密尔顿偏微分方程的形式,因为那样一来他就无法用(3)和(4)来得出对他来说至关重要的(5)式了。。。。为了维护大咖薛定谔的名声,大家不妨把我这里所说的当作是在讲李定谔或杨定谔。


5. 结束语

如我在本文开头所说的,本文标题之所以叫做“探秘薛定谔方程的推导”而不是“揭密薛定谔方程的推导”是因为不想将本文的推测就认定为薛定谔当初得出他那个著名方程的实际过程。不过,既然没有人能够按照他的那篇获得诺贝尔奖的文章来合乎逻辑地重新推导出他的那个方程,而且他的文章中也确实存在一些明显的逻辑错误,我们可以合理地想象一下假如是李定谔或杨定谔站在薛定谔当时的位置要想从爱因斯坦和德布罗意已经得奖的两个公式来得出一个所谓的微观粒子的波动方程的话,他们可能会怎么做。。。。本文所做的就是这样一种工作。

如前所述,本文的起因并不是薛定谔文章中的明显的逻辑错误,也不是我们从视频中看到的那位曾说:“假如你在冰上摔疼了屁股,不要问我为什么。在物理学上不要没完没了地问为什么”的著名的诺贝奖得主费曼所说的“没有人可以从已知的任何内容得出薛定谔方程”这句话。。。。本文的起因是看到声称没有用到相对论的薛定谔居然在他们的文章中“推导”出了只有用了相对论才能得到的德布罗意波长公式

最后顺便对我在2023年写的“德布罗意波之错和薛定谔之幸运”【3】一文及相应的英文版文献【4】稍作评论。在那两篇文章中我都提到了薛定谔方程因为拒绝使用相对论而不受相对论错误的影响。这一点现在看来是不对的。尽管薛定谔没有直接使用相对论,但因为他的方程是从德布罗意的波长公式出发凑出来的从而间接地受到相对论影响。

跟踪本博客从而了解自2022年初以来本博客揭示20世纪物理学弊病之进程的读者都见证了过去两年多的时间里本博客是如何在没有任何一个人的帮助下在上帝的带领下克服重重拦阻走过来的。本人并非物理专业人士,而面对的则不但是被整个物理学界奉为标准理论而且目前仍被整个物理学界加上庞大的科普队伍拼命维系的20世纪物理学。因此,大家应该预期会看到诸如我在2024年说的与2023年说的不同的现象。其实,这是我孤军奋战所出现的非常正常的现象。比起全世界数以千万计的专业物理大军在经历了一百多年的实践后仍死抱着20世纪物理学中的错误不放,我这里表现出的2024年纠正2023年的错误应该说是一件大好事。一切荣耀归于上帝。



[1] 戴榕菁 2024戏剧性的薛定谔

[[2]] Schrödinger, E. (1926). “An Undulatory Theory of the Mechanics of Atoms and Molecules”, The Physical Review, Vol. 28, No. 6,  December, 1926. Retrieved from: https://web.archive.org/web/20081217040121/http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf

[3]】戴榕菁 2023 德布罗意波之错和薛定谔之幸运

[[4]] Dai, R. (2023). Correction to de Broglie Wavelength. Retrieved from: https://www.academia.edu/111922499/Correction_to_de_Broglie_Wavelength

[[5]] Up and Atom. (2019-12-12). [YouTube] What is The Quantum Wave Function, Exactly? [video] url: https://www.youtube.com/watch?v=EmNQuK-E0kI&t=9m22s


 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.