先转两则相关消息/评论 1. (转〉没有勇气面对现实,也就只能自欺欺人。 2016年5月30日,中国科技创新大会、两院院士大会、中国科协第九次全国代表大会在北京召开,这是1978年之后的又一次“三会合一”大会。除外访的一位常委外,其余6常委悉数出席。国家最高领导人在会上要求科学家们要“勇攀高峰”、“让中国这艘航船,向着世界科技强国不断前进”,不用说,这又是“一个团结的大会”,“一个胜利的大会”。 然而,就在大会第二天,即5月31日的《中国科学报》披露,也就在这次大会上,先是一名头发花白的中科院院士发言道,他从来不在这种场合发言,但这次他“有一个疑问,也可以说是一个请求”。他请求什么呢?他说:“严格的网络监管,对我们搞科研的人来讲,损失是非常大的。其实通过国外的一些网站,我们可以了解很多科技先进国家正在做什么,以及他们把科研成果转化到了什么地步。因此,是不是可以给搞科研的人一点特殊的方便?” 就在他简短的发言完后,“会场安静了1秒钟,突然间,掌声四起”。此时,坐在他身边的另一名院士接过话筒,高声说道:“在没有比较和认识的情况下,我们想走在世界科技发展的面,想世界领先,我觉得是非常困难的。”当这又一位院士“语毕”,在场的院士们交头接耳起来,有的说:“我非常赞成这个意见!”有的说:“如果这个问题解决了,这次会议就相当成功了!”还有的说:“信息障碍太多,不仅对科学发展不利,对国家形象也不利!”之后,“此起彼伏,说话声也越来越大,会场沸腾了”。《中国科学报》这篇文章随后被新浪网、财经网、中华网、中国教育和科研计算机网等纷纷转载。这还不算完。大会过后,有78名院士联名上书,呼吁国家对科研人员解禁网络封锁。 还说什么?其他多余的话说也没用还惹人烦,不过,也还是想啰嗦几句:这么一个想要“做大做强”的国家,如果连院士们对一些科技先进国家现在正在做什么,以及人家把科研成果转化到了什么地步都不知道,不论你说要打造什么,我都不敢相信;不单是本人不敢相信,估计连那些专家学者乃至院士们也都一定不敢相信。若连专家学者乃至院士们都不敢相信,不管那口号喊得有多响,说得有多“厉害”,还是会落得像中兴这样一个谁都不愿意看到的“下场”——好听一点,叫结果。 没有勇气面对现实,也就只能自欺欺人。
2. 中国的人工智能水平如何?如果光看这方面专利似乎比美国还强,但是ChatGPT这样机器人是不会诞生于中国的,它现在供亿万用户同时在线免费用,在中国那是不可能的。中国的人工智能一半用于监视百姓,例如人脸识别。另一半用于深掏百姓钱包。他们的创新不外乎这两个方面,服务人类他们是永远不会的。 https://twitter.com/jam79922967/status/1624994469664751616 ==================================== 许成钢:从 ChatGPT 看中美人工智能竞争ZT 全文链接:https://www.bumingbai.net/2023/02/ep-036-xu-chenggang-on-chatgpt-text/ 文字版全文太长,节选一部分如下: ....美国领先中国是非常显然的,而且不光是这个范围,是基本上在所有范围是保持了领先,只有极其个别的一两个地方,两边可能差距不清楚,比如图像识别。图像识别方面,两边没有清楚的差距,一个很重大的原因,是因为中国的图像识别是和警察系统在一起的。警察系统投资量特别大、应用量特别大。任何技术要发展是离不开大量的应用和大量的投资。由于它是全国的警察系统、保安系统通通都用这个东西,人工智能在全世界第一个最大规模的应用就是中国的警察系统的监视。这就使得中国在图像识别方面是比较强的。除了这个以外,在任何的方面,中国都是比美国落后的。.... 中国在这个方面和美国竞争,有至少两个方面的问题。第一个方面,是技术本身,因为百度还没有出来,我们无法预先预测,但是,我可以猜测,百度几乎没有太大可能在技术上达到这个水平。什么原因呢?因为前面我们提到,ChatGPT的这个引擎啊,是GPT3.5,这个引擎百度没有,那就造不出这个东西。.... 这也不单纯是有这个引擎,还有怎么用这个引擎,还有很多技巧。虽然在计算机科学、计算机工程上,也许不值得发表论文,但是这些know-how、技巧、技能,是只有干的人才知道,不干的人是不知道的。所以你怎么弄的,你怎么调的参数,(百度是不知道的)。所以基本上我的猜测是,百度不太可能能达到这个水平。 另一方面,如果有很多审查,它会怎么样。实际上,你哪怕不对它的模型做筛选,它的数据本身已经筛选过了。你面对筛选过的数据,和面对没有筛选过的数据,这个结果就已经不一样了。我出于好奇,自己做过一些试验,提一些问题,如果用简体字,获得的这个回答,就很有趣,基本上就是小粉红。你这是美国的模型啊,美国的模型是中性的,它自己没有任何倾向,但是它在简体字网络看到的文献,几乎通通都是经过筛选的呀,所以它大部分的文献都是小粉红,于是它学来的整套的语言、整套的表达方式,以至于你看着它像是有立场,其实它是个机器人,它没有立场,但它表现得像有立场一样,它就是一个小粉红的做法。为什么用简体的时候就变成了共产党立场,为什么用繁体就变成了反共产党立场,是因为所谓机器学习获得的资料是什么,它就按照它获得的资料来回答。因此百度做的这个东西,它会自动按着共产党的宣传来回答。 第一重要的是中国对于言论自由的限制,本身会造成结果。比如谷歌搜索在国内就不能用,所以在国内只能使用百度搜索。如果任何人有机会对这两者做过对比,你会看到它们之间的差距是天壤之别。这就是为什么做科学的、做工程的、做研究的人,基本上不使用百度搜索,不到不得已的时候,不使用百度搜索,基本上都是用谷歌。因为百度搜索,严格地说是不能用的。这个是天壤之别。 刚才讲抖音,抖音是非常了不起的一个创造,不像百度是模仿谷歌的。中国其实人才多得很,无论是工程的、技术的、商业的,人才多得很。如果是个自由的环境呢?凭着这么多的人才,到处都可以发展出来最先进的东西。尤其在过去是持续开放的环境,大量的基本技术来自美国和其他发达国家,然后(中国有自己的)应用。现在我们讲ChatGPT,中国自己在基础科学上,基本的计算机工程上没有突破。其实在计算机那一行里,人们认为这没什么、这很一般,但是它作为一个产品、作为一个应用,那么就是个大突破。这个突破,实际上是在人们已经积累了这么大量的、雄厚的技术基础上,你怎么能表达出来,让普通人能接近。抖音也是这样的情况,只是抖音对应的技术基础没有ChatGPT这这么大,所以往下能走多远,和ChatGPT是不能比的。ChatGPT下面要走无限远,现在才是刚刚开始,只是在试验。 总而言之,任何重要的技术方面的产品的发展,它其实都离不开制度、离不开整个环境。当制度和整个的环境有限制的时候,我们基本上可以猜测,像抖音这样在世界上领先制造出来并且全世界都在用的产品,以后很难再出现。它在过去出现,是因为过去的开放的环境带来的。开放的环境一旦没有了,这个东西就很难出现了。 ... 人工智能这个领域,有三个决定性的因素。第一个因素是算法,第二个因素是计算能力,第三个因素是数据。人们往往会认为,算法是公开的,所以任何最新的算法在美国产生之后,中国的科学家们也就自动获得了。实际上比这个更重要的一点,在美国的计算机行业和人工智能行业里,大量的非常优秀的科学家是中国人,这些中国人是两边跑的,可以同时是在美国的顶尖的大学和研究机构工作,同时还会回来,有的人任何时间在美国辞职就回国了。所以呢,中国当然就掌握了最先进的算法。 然后计算力呢,由于中国过去跟国际间是互通的,在互通的情况下,虽然中国解决不了自己的半导体的问题,但是计算力无非到最后就是芯片,过去可以用大量进口的方式解决它的计算的问题,就是花钱就是了。所以人们会认为算法上没有显然差距,计算能力上也可以没有显然差距,而且的确中国有好几年,超级计算机在世界上排行都排到最前面,那么计算力没有问题。然后下面就是数据,人们有一种这个观点认为,中国的数据是全世界最多。这个观念本身实际上是可以争论的,就是当人们有这个观念的时候,认为中国的数据世界最多。那好吧,如果前两个都跟世界最强的是一样的,那么后一个是世界最多,那么中国在人工智能上就应该是世界最强。 这三个方面呢,咱们可以分别看一下。 第一,算法。算法这个东西,虽然抽象地说都是公开的,但是实际上,当它一旦进入到了实际应用的时候,它并不真的都是公开的。你有多少能力能解决问题,其实直接跟算法在一起,它只不过是在那个算法的基础上,针对你要做的那一件事儿,有相当的研究工作。这就为什么我在讨论DeepMind做的那些工作,中国一个都没有。这个本身说明,中国没有算法,因为你要拿了这个算法去解决分析DNA的工作,并不是机械地拿人工智能算法就行了,你一定是做这个DNA分析工作的人和搞AI的人,合作来改那个算法,那个算法它是不公开的。那个基础算法,作为计算机科学的算法是公开的,那么现在的ChatGPT,它是不公开的,它绝对是保密的。ChatGPT3.0,只公开了一个简化的版本,它的完整版本,微软已经(通过)排他性的方式取得了。现在ChatGPT4.0马上会出来,这都是不公开的。所以实际上算法那个所谓的公开,是在相当基础研究的阶段,一旦过了基础研究,进入到应用的时候,大量的东西都并不是公开的。 其实中美之间在人工智能上会迅速拉开距离,其实拉开的首先是算法,并不是人们以为的算法都是公开的,算法真正到了最关键的时候就不公开。 第二,计算力。现在半导体卡脖子以后,计算力很快就会出大问题。当你的计算力出大问题的时候,这个事儿就更不用谈了。 第三,数据。中国是不是数据最多最好的国家?不是。因为它有非常非常大的限制,制度上有言论自由上的严格限制的时候,它的数据就是扭曲的,你这个扭曲的数据,给社会带来了巨大的问题。严重扭曲的数据造出来的人工智能,做的是扭曲的工作。我相信中国会生产,但是它生产出来的中国版本的ChatGPT,是非常严重扭曲的ChatGPT,是小粉红式的ChatGPT。 ...
这里边实际上是两个大的方面,就是中国这个自己的制度限制了自己。第一个大的方面是国际环境,就是这个过去中国的非常快速的发展,在互联网技术上,在电商方面,是完全不能离开国际环境的。就是没有这个国际环境,中国没有可能在电商方面、在互联网方面会变得这么强。就像你刚才引用的那个数字,就是一度在许多方面都是国际领先的。因为我自己也曾经在罗汉堂——阿里和这个蚂蚁金服的罗汉堂,和他们工作过,所以有亲身体验。当时的阿里和蚂蚁金服在许多方面都是国际顶尖的。而因为我有亲身的体验,直接熟悉里面的人,知道他们是怎么工作,知道他们是哪里来的。就是它跟国际大环境是完全不可分的,没有这个国际大环境,他们没有那个人。他的人是靠国际大环境。这个技术是靠这些人带过来,所以这个国际大环境,你必须要和发达国家是朋友,而不能和发达国家是敌人。就你和发达国家是敌人,大环境没有,就是根本就不存在这个可能性。 那么,第二点,所有最发达的中国这些企业,没有例外的全部都是私营企业,只有私营企业才能做得出来。那么,自从2018年以来,不断打击民营企业。尤其是在19年之后,就直接去打击这个中国最领先的、国际上最领先的企业。所以你刚才引用的这些数字都是这个打击的前夕。那么打击之后就是一落千丈。曾经中国的电商每一个都是世界上最强的。就是最强的几个,每一个都是世界最强的。现在把它们全部都加起来合在一块儿,不如美国一个公司这个市值高。那么这个一落千丈的原因不是他们不行,而是你这个制度去打击他们。你这个制度打击他们的时候呢,实际上你不仅仅是打击了他的商业,你直接就把你的国家可能发展这些技术的公司全部就釜底抽薪了。 那么有人说了,用举国之力来发展不比他们强吗?那好,那我们实际上举国之力是在做的。这个举国之力一直在做,有没有做成功呢?半导体方面显然就是没有做成功。 然后人工智能方面呢,有一个非常巨大的公司,叫做北京智源人工智能研究院,BAAI。这个BAAI是早在2021年,向全世界宣布制造出了一个重大突破:世界上最强的AI Model,它的直接的竞争对象,它是和GPT的3.0去竞争,但是它说它是世界最棒的,它的这个直接对比的对象是Google的那个AI模型。通常说这个AI模型参数越多,这个模型越复杂,能力就越强。那么,Google那个是16,000亿的参数。智源的模型的名字叫做悟道。悟道模型呢,(官方)说它有17,000亿个参数,是用中国最大的那个超级计算机帮它算的。所以(官方)说它就是世界第一。而且他上来就说我这个是可以聊天的,我这个什么问题都能解决,是超级的、通用的。但是2021年宣布至今,你没有见到任何人用它啊,你没有见到它有任何影响,就已经过去两年了,你没见到啊。那么这就是个问题了。 然后这里边,因为我们刚才在讲这个举国之力嘛,这个机构就是举国之力啊。这个我专门为了悟道模型和为了智源公司,我作了一个测试,我去测试了ChatGPT。我问ChatGPT,你认识不认识悟道模型。它说我熟悉悟道模型。我说你把悟道模型跟你自个儿做个对比吧。它说,我作为这个open AI制造的,我们俩是一类的。它说,我们俩都是世界上最大的模型。然后呢,我说你们俩谁好呀?它说这个没法比。它就列了四个方面(的异同),都是很确切的。然后它拒绝直接对比,说那不可比,各做各的。哈哈。 然后我说,你知道不知道智源这个公司呢?它说我熟悉BAAI。我说那你这个BAAI 和Open AI两个怎么对比。Open Ai就是制造它的公司。它说,它们两个都是专门做人工智能的公司,但这俩公司非常不一样。它说,这个Open Ai是一个私营公司,智源是举国之力的公司。 ...它说他们是国营的,国家的力量弄的。然后它说我们是私营的,所以我们集中力量搞应用,我们要出产品,我就是它的产品。然后它说,他们是什么都弄,非常宽,非常大的志气。下面它不说了。 因为你最后是看结果嘛,不是看你声称你的模型有多大。那么再有一点,刚才我提到就是悟道模型,号称有17,000亿的参数,但是你至今你见不到任何应用,见不到谁来试一试它。而这个ChatGPT呢,它是1700亿个参数,就是悟道的1/10,就是它参数的1/10。 但是呢,人们需要很小心,就是这个参数,这个数字是什么意思。因为Open AI在宣布它的ChatGPT的时候,它就把这个解释出来了。它说我这个是真参数,但是有些模型,它那个参数不都是真参数。什么意思呢?我这都是翻译,我是把技术语言翻译成白话了:它不是真参数,就是它名义上是有——比如说谷歌那个——名义上是有16,000亿个参数,但实际上它大部分的参数是固定的常数,根本就不是靠AI调出来的。那么我们可以猜测悟道的模型大概属于这一类的。所以这就是为什么它不能和这边的模型真的来对抗。因为你最后那个模型并不真的都是用这个AI方式去算出来,把它定下来的。它是不同的组织结构、不同的人来做不同的事儿,就是你只是愿意花钱,只是愿意规模做得大,是一回事儿。你很聪明地做,是另外一回事儿。 袁莉: 那我们就正好就接下来可以讨论一下这个举国体制啊。就是习近平他是说:“要加快科技自立、自强步伐,解决外国卡脖子问题。首先是健全新型举国体制,强化国家战略、科技力量,优化配置创新资源。”这个我还写过一篇专栏,去年。我挺好奇,就是用举国体制来发展科技,是否有过这个成功的案例呢? 许成钢:这个能去看什么领域。如果这个领域呢,是你有一个固定的目标,你是抄人家的,就是模仿的,去抄的和模仿的。那么你由于那个目标很清楚,所以举国体制的意思就是大量的调集资源去抄人的,而且如果那个目标不是快速移动的,那么你用这个办法可以相当快地追上了。但是如果你是在一个前沿上,如果你是要探索的,那这个办法是不可能的。 不可能的原因其实非常简单。第一,是因为任何要探索的东西,在你没有出来结果之前,没有任何人知道,谁能探索出来;也没有任何人能知道,你探索出来的是什么东西。你比如说用人工智能做个例子吧。非常长的很多年里,很多很多的人都认为,人工智能下一个重大的实际应用的突破是自动驾驶。但现在基本上这个破灭了。就是基本上人工智能领域的人已经认识到了,这个是当时人们错误地认识了自动驾驶这个工作的性质是什么。你自动驾驶飞机是一回事,那个简单。自动驾驶车,在路上,在挤满了人的路上,这个是绝对不是一个在近期里能突破的事儿。所以,过去所有这些公司的人砸进去的钱,就算积累了一点知识而已。这个领域现在已经过去了,就现在的这个硅谷大规模裁员,很多就裁的就是这。原来大家拼了命地在这个东西上竞争。现在就是(失败了),你这个事先是不知道的。所以如果你用举国之力去搞自动驾驶,你进了一个死胡同,你就全砸在里头。你这个举国之力的钱就全都都浪费。 这也是为什么你即便是在资本主义世界,了不起的创新绝大部分都不产生在大公司。就是了不起的重大的创新,基本上都是新公司。就是大公司是不出来的。你比如说现在这个ChatGPT的里边的重要的一些人物是从Google里出来的,但是为什么不是Google呢?还有当年这个苹果是个重大的突破——我说苹果计算机啊——因为我们整个计算机使用图像(注:指图形用户界面),它的技术哪儿来的?那个技术是从Xerox(施乐)公司里弄来的。是当年Xerox公司发明这个东西的时候,那两个发明的人就认为这是了不起的发明,就希望能把这个东西做了。但是这个公司的老板就认为这个东西没价值,所以这个东西就一直压仓库里就没有用了。直到Steve Jobs把它给弄(成功)了。 那么这个呢,就是非常说明问题。就说那两个发明这个东西的人,都变成了你只有去博物馆才能知道,普通人都不知道(的人)。实际上真正苹果计算机的突破,你要是讲工程上的贡献,是他们(完成的),不是Steve Jobs。但是由于他们在大公司里,大公司的人看不上他们的工作,所以他(这个东西)就死了。 那么再一个例子就是半导体本身。半导体,这个大家都知道Intel公司。Intel公司的这群人真正的技术上的重大突破,获得诺贝尔奖的,是在AT&T的贝尔实验室,不是Intel公司。但是为什么在AT&T的贝尔实验室可以获得诺贝尔奖,不能造出半导体来呢?因为AT&T作为一个大公司,它有它的这个主张,它有它的做法。他没有看得起这件工作,所以这些人就辞职跑到硅谷来造了一个Intel,才有了半导体的大发展。 所以这是一个基本规律。这个基本规律就是,在一个完全不知道的领域,没有人知道,就是发明的人也不知道,发明的人所在的机构的人也不知道,所以没有人知道。那么你最后能不能发展起来,是靠探索。那么这个探索,你只有自由的社会,让人自由地探索,给人自由探索的机会,包括钱是自由的,包括这些巨大的资本是自由的流动、不受党的控制的,它才能发展。这也是为什么历史上每一次的产业革命都只产生在一个制度上,不产生在另外的制度上。这一个制度都不是一般的资本主义,是英美式的资本主义。只有英美的资本主义才有产业革命,其他的资本主义,产业革命都没有。这是有原因的。所以每一次每一次都在重复同一件事。每一次的技术不一样,但是每一次的机制都在重复。 袁莉: 那你能稍微说一下为什么?就简单说一下。 许成钢:就是因为你在这个制度下,它给了人自由去探索。而且资源的配置,是最大的程度自由的。英美式的资本主义和其他资本主义差别在哪儿呢?在于它的资源配置是靠的证券市场。然后呢,在证券市场的支持下产生出来的风险投资。这个风险投资是离不开证券市场的。 然后,中国曾经有过的那些了不起的成绩,靠的就是风险投资。这些风险投资的背后,经常根本就不在中国的证券市场上。他们靠的是香港的证券市场和美国的证券市场。但是当你把大环境都搞坏了的时候,这个风险投资,真正能起作用的风险投资就退出了你的市场。然后你把大环境搞坏的时候,你还要举国之力,那么你就在进一步挤压风险投资能够运作的可能性。在没有风险投资的情况下,实际上无论是政府举国之力,还是大公司的举大公司之力,实际上在重大发明创造上都是有基本障碍的。 像日本和德国他们的这个以银行为中心的资本主义制度,那么首先它这个社会是自由社会,它只是资源配置上,它是比不过英美的这个制度。所以,它很难在第一线上跟英美对比。但是由于它是个自由的社会,这个信息也是自由流动的,它可以利用它们的制度里边的优势来紧跟着英美制度下发明创造的东西,它能紧跟上。这就是为什么大量的辅助性的工作,而这个辅助性的工作后来都变成不可缺的,那么这个性质的工作往往产生在日本跟德国。所以它们合在一起是一个世界。那么这一个世界信息都是互通的,然后他们这个能力之间是互补的。 所以不要很狂妄的以为自己靠举国之力会变成老大。实际上你根本连老二也都谈不上。就是日本跟德国的这种老二,你都跟他差距还很大的。就是不要很狂妄以为你要跟老大去对比了。就根本都是连这个事情都没搞清楚,根本没搞清楚这世界上怎么回事,科学、技术、商业是怎么发展的,是没搞清楚。 ... 首先从这个中国经济是否可持续发展的角度说。其实中国整个的经济距离发达还差很远,就是中国的劳动生产率还非常低,而跟欧美相比,(是对方)1/8,1/6这个之间的关系。就是当它的劳动生产率如此之低的时候,实际上它为了经济的持续发展,它最应该关心的不是前沿的技术,因为它离前沿远的很嘛。你还是应该想办法模仿欧洲的、日本的、韩国的、台湾的,你去模仿他们,而不是想办法创新,因为创新很难、很难。而且中国没有那个制度。 这个是一个基本判断上的基本错误。就是它误认为,它是世界老二了,它误认为它要变老大了。然后它误认为它要在所有方面跟这个老大来对比。它不知道它的差距有多大。它不知道中国的穷人有多穷。就是你必须要先看到中国的穷人有多穷。如果我们把绝对贫困线使用通常国际上的标准,中国有五亿人在绝对贫困线之下,用国际通用标准,而不是使用专门给贫困国家使用的标准。通用标准意思就是让人稍微有一点尊严,你五亿人生活得没有尊严。你穷到这个程度,你需要的是非常非常基本的,像欧洲的技术,像台湾的技术,像韩国、像日本的技术,你能像他们那样,你就能把你的人均GDP的水平从现在的样子抬高到美国的一半。现在是美国的1/4、1/3的水平。 那现在,我们可以看得很清楚,在这个18年、19年、20年这一段时间,猛攻中国的民营企业,尤其是中国民营企业的最先进的企业。这一番的猛攻之后,实际上你已经把中国民营企业搞技术创造,在技术创造、在这个创新上面大规模投资,已经釜底抽薪了。因为任何的创新都意味着很高的成本和很高的不确定性,是冒险的。就是本来就要冒险,然后你在政治上给人家来了这么大的风险。而且这个风险是相当确定的,就是说这个打击是很确定的。那你如此打击之后,那么谁还愿意投这种长期的(领域)? 其实还有另外一个领域,今天没有谈的,就是制药业。中国的制药业是非常非常奇特的一个行业,因为全世界的制药业,只要它叫做制药业,制药业的研究与开发的投资占它的那个销售额的那个比例啊,都是什么1/3啊,什么1/4啊,就是非常大的比例。而中国的所有的制药厂,它的研发占它的销售比例都很小很小。所以什么意思呢?中国没有能力制药的。这就是为什么这次新冠实际上是暴露了一个重大问题,就是中国制造不出来好的疫苗。中国的制药业是很差很差的。就是好的疫苗造不出来,因为长期的、没有足够的研发的投入。那么我们刚才讲了,你本来就很弱呢,你现在又这一通的打击,使得人们不敢在研发上面投入。那你最后只剩下举国之力,所以这个举国之力弄不了的。 ... 长远的说,实际上苏联就是一个好的例子。就是中国现在的水平比当年的苏联还差得远了。当年的苏联是已经超过了美国的人均GDP1/3的水平,略略超过。中国现在比那个时期,还有显然差距,还没追到就已经增长速度下来。苏联是追到了1/3了,就追不了了。就说为什么苏联会垮台呢?就是因为它再追也追不上去,就想办法改革。改来改去,最后他们的改革派们得出了一个结论,说改的只能是这个制度,在这个制度下,没有改革可以做了。人们都有这个结论,就不是光苏联,整个的苏联的、东欧的国家全部改革的人都出来了这个结论。所以,中国要看的例子就是苏联,所以中国现在的增长速度大幅度的降下来,实际上就是不会再上来了。它会有短的时间的小的波动,但是整体上它只能是越来越低了。原因就是因为它这个制度阻碍它的发展。... |