设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
 
0+1  
有感而发, 可多可少  
网络日志正文
宝刀不老 2011-05-21 07:23:14
 上海某出版社要出一本2010年高考数学复习的书,找我审稿。尽管与中学数学脱离了这么多年,难免生疏,凭我当年的本事,自知不会有太大问题。只是平面几何与其他分支有点不一样。所以我留了条退路,万一……这部分就只好另请高明了。还好,书中平面几何题目不多,出现的那几题基本正确,解答也明白易懂。书中大部分的错误都是笔误(Typo),但有两题显然超出了这个范围。所幸这两题都与我专业(排列组合,Combinatorics)有关,所以我很快就发现了毛病,并很容易给出了正确解答。在排列组合方面说我专家是绝不过分的,(此处省略约50字)。 其一是上海2009年高考题,题目照抄如下:

某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点。若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-22),(31),(34),(-23),(4,5)(6,6)为报刊零售点.请确定一个格点(除零售点外)为发行站,使6个零售点沿街道到发行站之间路程的和最短.

这个题目在不同章节出现了两次,两个老师的第一步都是对的,而且都很漂亮。当然,其余几步也是对的,但确实很不漂亮。老师们指出,横竖两个方向的最佳位置,可以独立地搜寻。第一个老师说需要拓展思路,建议的解答是使用函数。他没有提供细节,我看不懂,这题目怎么扯上函数了。继续工作了几天,我又看到另一老师从不同角度引用了此题,这次他给出了细节,原来他用绝对值符号,把总距离象征性地写成了函数形式。假定所选点为(X0Y0),总距离为

S =|-2-X0|+|2-Y0|+|3-X0|+|1-Y0|+|3-X0|+|4-Y0|+...+|6-X0|+|6-Y0|

绝对值符号对解题并未起到任何简化作用。答案为(34)和(33),距离均为23。但(34)与零售店重复,故(33)为唯一选择。

            老师说,高考中这题得分率非常低,“说明我们的数学思想的教学从‘模仿’到‘自觉’还有很长的一段路要走!”对此结论我不很同意,我觉得有两个可能。第一,这题的正确解法(不是上面列出的)可能超出了教学大纲。第二,老师本身的水平有待提高。我们说,教学生一碗水,老师自己要有一桶水。在这个问题上,我想老师可能需要一缸水。为了充分说明一缸水的威力,我们考虑更一般化的问题。

题中城市有N个报刊零售点.请确定一个格点为发行站(可以是零售站),使N个零售点沿街道到发行站之间路程的和最短.

            我记得统计中有个什么问题与此类似或就是等价,但记不起来是哪儿看到的,所采用的就是下面介绍的非常简单巧妙的思路。我们第一步遵循老师的思路,先考虑一个方向。尽管报摊在二维没有重复,但在一个方向上重复还是可能的。比如(21)和(22)并不重复,但在水平方向是同一个点。此题的答案是中位数(Median),中位数的定义。我们分几种情况讨论。

1.      N为奇数2K+1,第K+1报摊处无重叠, K+1处即最佳点。假定距离之和为L,往左移一格,到左边K个报摊的距离均减少1,共减少K。右边K个点以及中位数本身距离均加1,共增加K+1。两边一起考虑,总距离加1。往右边移一格也是一样结论。其余情况证明几乎一模一样,证明就留给读者了。

2.      偶数2K,第K及第K+1报摊处均无重叠,KK+1处及中间各点都是最佳点。

3.      奇数2K+1,第K+1报摊处有重叠,当然其中任何一个都可认为是K+1。如果没有重叠就是(1)了。最佳点就是这重叠点。

4.      偶数2K有重叠。共有4种情况:(a) K处有重叠,K+1处没有; (b) K+1处有重叠,K处没有; (c)两处均有重叠; (d)KK+1 在同一点,或许还有其它报摊重叠在这个点。如两处均无重叠即为(2)。四种情况的最佳点均 和(2)一样,即K或第K+1处报摊及中间各点。(d) 的最佳点只有一个。

实际的题目只有6个报摊,而且不需要证明,所以遵循这思路的解答的简单程度应该超出大多数人的想象。

·         X方向6点:(-2-23356),中位数是3

·         Y方向6点:(123456),中位数是34

34)处有零售点,答案为(33)。整个解题过程大概只需1-2分钟。这种能力很难说属于高中数学哪一部分,这应该是一种综合能力。因为它属于离散型,所以排列组合专家就会有一种直觉的敏感。

            另一题是纯粹的组合题目,老师的思路完全错了,答案自然也是错的。题目抄录如下:

某车间有 名工人,其中4人仅会车工,3人仅会钳工,另外3人车工钳工都会,现需选出6人完成一项工作,需车工、钳工各3人,问有多少种选派方案?

老师正确地指出有多种解法,但他“随便”选取了按“选出的钳工中所含全能工人的个数”来分类。老师的解答如下。我们用C(m, n) 表示m中选取n的组合数

选出的钳工中没有全能工人的选法有C(3, 3) C(7, 3)种;

选出的钳工中有1名全能工人的选法有C(3, 1) C(3, 2) C(3, 6)种;

选出的钳工中有2名全能工人的选法有C(3, 1) C(3, 2) C(5, 3)种;

选出的钳工中有3名全能工人的选法有C(3, 3) C(4, 3)种.

∴总共有309种选派方案.

如果仔细分析,应该说这样分类也是可以的,很不幸,由于过于复杂,老师的分析和答案都是错的。由于这题错的相当离谱,指出错在何处需要很大篇幅,所以我就直接给出正确解法。

            这道题显然应以作为枢纽的全能工人的人数来分类。

1.      全能=0 C(4, 3) C(3, 3) = 4 (车工43×(钳工33

2.      全能=1C(3, 1) [C(4, 3) C(3, 2) + C(4, 2) C(3, 3)] = 54

(全能31) ×  [(车工43) × (钳工32) + (车工42) × (钳工33)]

3.      全能=2C(3, 2) [C(4, 3) C(3, 1) + C(4, 2) C(3, 2) + C(4, 1) C(3, 3)] = 102,

4.      全能=3C(3, 3) [C(4, 3) + C(4, 2) C(3, 1) + C(4, 1) C(3, 2) + C(3, 3)] = 35

 

3)和(4)的注释和(1)(2)类似,我嫌麻烦故未写出。

            综上所述,总共有4 + 54 + 102 + 35 =195种选法。但由于这题的具体情况,我们有更为简洁的方法。稍加分析就会发现,只要不是4个钳工全部去,其它组合都能符合要求。所以总数为

            C(10, 6) - C(4, 4) C(6, 2) = 210 - 15 =195

第一项是10人中任选6人的组合数,再减去4个钳工都去的组合数。

            通过这次审稿,我个人认为国内高中数学教学中最大的变化是相当多的平面几何类题目通过解析几何的方法来解。书中南洋模范中学XX老师的解题思路,给了我很深的印象。我在这儿通过一个相当著名的“历史”故事,测试一下自己掌握新知识的能力,从另一个角度测试一下自己这把刀。

            上大学时,我曾看到过这样一则故事。由著名的普林斯顿(Princeton)考试委员会(即给TOEFLGRE出题的那家考试委员会)主持的一项中学生数学考试总共有50道选择题,每题2分,100分为满分。某校一学生遥遥领先,得了96分,同学们纷纷向他祝贺,他却并不高兴,说他应该得98分。这下同学们傻眼了,以为他在说胡话。那学生回家后,向他当工程师的爸爸诉说了原委。工程师听完儿子的诉说,仔细考虑后觉得他儿子是对的。于是,他给Princeton 考试委员会写了封信陈述他们的观点。我还记得回信中教授的一句话:“我们脸红了,应该说至少他比我们更正确”。

            该题目如下: 有一个正四面体,即四个面均是正三角形,三角形边长为1。另有一金字塔形物体,底座正方形边长为1,尖顶部分由4个正三角形组成,边长自然也是1。现在将正四面体的一个三角形和金字塔的一个三角形合在一起,新的物体共有几个面。金字塔有5个面,正四面体有4个面,所以“正确”答案是4+5-2=7个面。那学生通过计算发现,金字塔两侧两个三角形和正四面体两侧两个三角形形成180度,因此只有5个面。

            我记得当时自己刚学过立体解析几何,因此是用矢量分析来验证该学生的结果的。为写这篇短文,我把这个故事及题目挖了出来。当时的解法已经不记得了。下面的解答受到了XX老师解题思路的启发,应该比当年的我的解法更简单。思路是证明正四面体两个面的夹角的COS和金字塔两个三角形夹角的COS数值相同,符号相反。由于书写条件限制,我把直线ABAB表示。

            : 正三角形底座为∆ABC,顶点为D,底座中点为OBC中点为E

            已知:BC = 1ABC=60 º

            BE = 1/2OBE = 30º  ==BO = 1 / SQRT(3) ==EO = 1 / SQRT(12)

            DO2 = DB2 - BO2 = 1 - 1/3 = 2/3 ==DO = SQRT(2/3)

            DE = SQRT(3) / 2

            COS(DEO) = EO / DE = 1 / SQRT(12)) / (SQRT(3) / 2)= 1/3

            又设:  金字塔的底座为(正方形)A’B’C’D’,顶点为FA’F中点为E’,底部中心为O’。考虑∆B’E’D’,我们要证明B’E’D’COS- 1/3

      B'D' = SQRT(2)B'O' = SQRT(2)/ 2B'E' = D'E' SQRT(3) / 2

建立坐标系,B'D'X轴,∆B'E'D' 位于XY平面。注意到B'D'中点为O'

            E'O'2 = B'E'2 - B'O'2 = 3/4 - 1/2 = 1/4 ==> E'O' = 1/2

            BE = (SQRT(2)/2)i +(1/2)j DE = -(SQRT(2)/2)i +(1/2)j

其中i  jXY方向的单位矢量。

            COS(BED) = BE . DE / (|BE || DE |) = -1/3

            我的中学时代适逢文革,解题没有经过正规课堂训练,书写方式可能不规范。但我相信,这个解答是相当漂亮的。由此证明便可知为什么那个学生是对的,又为什么教授会脸红了。

浏览(1307) (1) 评论(3)
发表评论
文章评论
作者:0+1 留言时间:2011-05-22 18:13:45
谢谢小红人仔细阅读。构造一个正四面体是个很聪明的方法,《灵机一动》也有读者指出这一点。
用这个例子只是想说明解析几何应用于平面或立体几何的优越性,并没有去想不用计算就可证明最后只有5个面。
尽管计算现在看来已无必要,但显示优越性的目的应该还是达到了。
回复 | 0
作者:little_red_man 留言时间:2011-05-22 15:12:29
Say that the pyramid's base is ABCD (a square) and its top point is T.

Obviously, the intersection of the plane TAB and the plane TCD is a line (passing T). By symmetry, this line is parallel to AB and CD. Let W be a point on the line such that |TW| = 1. It is obvious that TBCW forms a regular tetrahedron (or TADW fors a regular tetrahedron of W is chosen on the other side).

TBW and TAB are on the same plane as they share two lines: TB and TW.

TCW and TCD are on the same place as they share two lines: TC and TW.

So we are done.

I would say that your proof is less "geometrical".
回复 | 0
作者:0+1 留言时间:2011-05-21 07:35:01
A book in my dream.这是其中《考场纵横》中的一篇。
回复 | 0
我的名片
0+1
注册日期: 2009-08-01
访问总量: 813,791 次
点击查看我的个人资料
Calendar
最新发布
· 太太的高见
· 高手在民间!
· 当书中出现错误
· 苏埃友谊万岁!
· 广州地铁的闹剧
· 下有对策,上无政策?
· 管的太宽了!
分类目录
【埃及-约旦】
· 苏埃友谊万岁!
· Made in China
· 古埃及 – 科学和伪科学之集大成
· 伪科学比没有科学更可怕
· 埃及导游贾宝玉
· 真真假假的阿部辛贝勒神庙
· 为什么阿斯旺的酒店都在尼罗河东
【美国政治】
· 管的太宽了!
· 活该!
· 都不是好东西!
· 大厦将倾,独木能支
· 封口费造假帐合算吗?
· Hogan 州长
· “好东西”?
· 另类的清廉
· 另类的贪腐
· 都不是好东西
【2024奥运】
· 妄议奥运(二)
· 妄议奥运(一)
· 她又来了!
· 小国的奥运金牌
· 这个冠军不孤独
· 既生瑜,何生亮
· 我看着他打破世界记录
· 祝贺美国终于“第一名”
· 二比二
· 全红婵和周洋
【难题】
· “难题”(3)-- 意外的惊喜(解答
· “难题”(3)-- 意外的惊喜
· “难题”(2) -- 鸡还是蛋 (解答
· “难题”(2)-- 鸡还是蛋
· “难题”(1)-- “简单”的极限题(
· “难题”(1)-- “简单”的极限题
【奇葩总统】
· 奇葩总统(1)- 股票总统
【最强大脑】
· 最强大脑 -- 色块迷踪(续)
· 最强大脑 -- 色块迷踪
· 最强大脑 -- 复活
· 最强大脑 -- 迷走点线
· 最强大脑 -- 珍稀足迹
· 最强大脑 -- 龟文古迹
· 最强大脑 -- 知己不知彼
· 最强大脑 -- 数字谜盘
· 最强大脑 -- 入场式
【书摘】
· 《华尔街数学》书摘 -- 暗示的力
· 《华尔街数学》书摘 -- 饮水不忘
· 《华尔街数学》书摘 -- 书缘
· 华尔街数学 -- 我的数学人生
【桥牌“外交”】
· 桥牌“外交”-- H先生
· 桥牌“外交”-- C先生
· 桥牌“外交”-- R先生
· 桥牌“外交”-- 引子
【脑筋不用急转弯 -- 续二】
· 24史
· 科学家的思考
· 朝四暮三
· 纸上谈兵?
· 为什么床铺死都不公布税表
· 质疑测量金字塔高度
· 如何用数学手段消除循环赛假球
· 如何尽快在大学新生中找出乙肝患
【我的大学 -- 续一】
· 太太太感谢您了!
· 饮水不忘掘井人
· 我的复旦梦
· 世界读书日
· 暗示的力量(2)
· 苏步青大师
· 久有凌云志,重翻几何书
· 人名不译
· 生成函数 -- 杀牛的鸡刀
· 欧拉定理的证明
【人间 -- 续二】
· 战俘 – 一个沉重的话题
· 我自认为相当理智和客观
· 一叶知秋
· 锦上添花和雪中送炭
· 异曲同工(三则)
· 社区的地球日
· 淡泊天涯
· 源于生活,高于生活
· 得理不饶航空公司
· 我几乎撒谎 -- 与大家共勉
【脑筋不用急转弯 -- 续一】
· 从统计学看国人的冷漠
· 一波四折
· 考考大家的想象力 (附“答案”)
· 毒酒和老鼠 -- 据 KM 说是 GS 的
【往事越千年 -- 续一】
· 昆仑关大捷和《血染的风采》
· 歌剧演员和歌唱演员
· 我的超级记性
· We are doing the impossible
· 上海人的体育辉煌
· 大浪淘沙
· 我为革命下厨房
【Alaska 之旅】
· Alaska 之旅(3)--前人栽树,后
· Alaska 之旅(2)--一国两制害死
· Alaska 之旅(1)-- 终于露馅
【莫谈国是】
· 打死卞校长需要老毛圣旨吗?
· 蛮不讲理知“劲草”
· 重贴领导指示
· Hooter
· 我为“86万”叫好
· 领导指示。。。
· 重要的一年
· 随机抽查
· 三位知识分子的遗产
· 为公布100名红色通缉人员叫好
【(不是我的)童年 -- 续一】
· 小朋友的高见
· 这次不扣钱
· 女儿的“科研成果”
· 一家三口数学竞赛,我居然只拿了
· 活学活用
· Email from Santa
· “著名”泥塑艺术家
· 女儿的幽默
· 小狗不会告状
· 美国校车补遗
【脑筋不用急转弯】
· 气死数学家
· 好人坏人
· 抽水马桶史话 -- 山寨版
· 前几天,我打了一幅臭牌
· 911 能减少贸易赤字?
【人间 -- 续一】
· 桥牌中的运气(续)
· 向桃园机场致敬!
· 好记性不如烂笔头?
· 苦不能苦孩子,穷不能穷教育
· 酒文化
· 买车记
· 电影怀旧
· 烧菜“经验”点滴
· 一次难忘的音乐会
【无题】
· Waterpick
· 《蓝色天梦》点评
· Obama Care 的报税 – 寻求帮助
· 钢琴硕士和博士
· 赫鲁晓夫令人尊敬的一件往事
· 打桥牌和上厕所
· 聪明的车夫
· No School !
· 一段不错的绕口令
· Everyday is weekend
【(不是我的)童年 -- 续一】
【科普讲座 -- 续二】
· 统计样本的笑话
· 欧几里得21世纪的学生
· GDP和幸福指数
· 给电动车泼点冷水
· 信用卡的保护程序
· 自动驾驶
· “内行”的“外行”人之所见
· 精算师的风采
· 我说文理相通
· 人名不译
【科普讲座 -- 续一】
· 一次真正的忽悠 -- 双周房贷
· 论“房贷忽悠”之忽悠
【科普讲座】
· “不是数学家”的烦恼
· “永久”邮票
· 制度优势
· 又闻蝉鸣
· 独行侠张益唐 -- 转载自戴世强教
· 做一回事后诸葛亮
· 半路上杀出个程咬金
· 考试和做研究(4) 迟到创造了历
· 考试和做研究(3)桥牌博士论文
· 考试和做研究(2)
【华尔街的数学】
· 《华尔街数学》出版以后。。。
· 华尔街的数学(结束篇) 光辉的
· 华尔街的数学(19) 锻羽而归
· 华尔街的数学(18) 什锦拼盘
· 华尔街的数学(17) 橘子和苹果
· 华尔街的数学(16)苹果和橘子
· 华尔街的数学(15)“标准”手册
· 华尔街的数学(14)“涂改”数据
· 华尔街的数学(13)假“公”济私
· 华尔街的数学(12) 第三者的模
【街谈巷议】
· 太太的高见
· 高手在民间!
· 广州地铁的闹剧
· 下有对策,上无政策?
· 拼死吃河豚
· 商人的智慧
· 在这儿,没有知遇之恩
· 部分大于整体
· 白草的战争逻辑
· 米饭里的沙子
【饮食文化】
· 小笼包史话
· 母亲的八宝辣酱
· 倚老卖老
· 搭便车
· 江浙点心和统一大业
· 糖藕 (非食谱)
· 蹄筋(非食谱)
【我的大学】
· 三强韩赵魏,九章勾股弦
· 惨烈的考试
· 重刑监狱犯人的数学难题
· 鱼骨头的故事
· 数学也有假冒伪劣
· 无名小卒和Nash大师的一段“交往”
· 别开生面的面试
· 我的第一次 0 + 1
· 大师的风采
· 桥牌博士
【人间】
· 当书中出现错误
· 你想不到的义工
· 丁惠民先生千古!
· 卡特总统生日快乐!
· 幽默的老板
· 买车记
· 个人自扫邻家雪
· 不说英语的留学生
· 多亏没有简体字
【(不是我的)童年】
· 女儿“学”元素周期表
· 一鸣惊人
· 布谷鸟又叫了
· 谁是老板?
· Potty 交响曲
· "重赏"之下, 必有&quo
【往事越千年】
· 瑪德琳饼干的故事
· 蒋经国的伟大
· 版权所有!!!
· 一身真伪有谁知
· 太湖美
· 人间自有真情在
· 蒋介石为胡适写的挽联
· 怀念胡耀邦
· 我家的“阿庆嫂”
· 我的英语老师
存档目录
2024-12-04 - 2024-12-29
2024-11-02 - 2024-11-29
2024-10-01 - 2024-10-31
2024-09-02 - 2024-09-26
2024-08-01 - 2024-08-31
2024-07-17 - 2024-07-29
2024-06-30 - 2024-06-30
2024-05-11 - 2024-05-30
2024-04-13 - 2024-04-17
2024-03-08 - 2024-03-08
2024-02-05 - 2024-02-11
2023-11-09 - 2023-11-09
2023-10-04 - 2023-10-18
2023-08-06 - 2023-08-06
2023-07-01 - 2023-07-28
2023-06-27 - 2023-06-27
2023-05-01 - 2023-05-21
2023-04-09 - 2023-04-23
2023-01-09 - 2023-01-22
2022-12-17 - 2022-12-17
2022-11-09 - 2022-11-19
2022-10-16 - 2022-10-21
2022-09-01 - 2022-09-10
2022-07-14 - 2022-07-25
2022-03-29 - 2022-03-29
2021-12-27 - 2021-12-27
2021-10-30 - 2021-10-30
2021-08-10 - 2021-08-10
2021-07-23 - 2021-07-23
2021-06-07 - 2021-06-28
2021-04-05 - 2021-04-05
2021-03-05 - 2021-03-10
2020-12-03 - 2020-12-30
2020-11-01 - 2020-11-26
2020-10-05 - 2020-10-24
2020-09-03 - 2020-09-20
2020-08-14 - 2020-08-31
2020-07-05 - 2020-07-24
2020-06-08 - 2020-06-08
2020-05-13 - 2020-05-27
2020-04-02 - 2020-04-30
2020-03-05 - 2020-03-26
2020-02-23 - 2020-02-23
2019-12-31 - 2019-12-31
2019-11-11 - 2019-11-24
2019-10-14 - 2019-10-18
2019-09-13 - 2019-09-24
2019-06-10 - 2019-06-10
2019-05-28 - 2019-05-28
2019-04-03 - 2019-04-28
2019-03-01 - 2019-03-14
2019-02-08 - 2019-02-23
2019-01-22 - 2019-01-28
2018-11-06 - 2018-11-08
2018-10-21 - 2018-10-21
2018-09-04 - 2018-09-28
2016-08-11 - 2016-08-11
2015-11-08 - 2015-11-22
2015-09-05 - 2015-09-27
2015-07-26 - 2015-07-27
2015-06-14 - 2015-06-14
2015-05-25 - 2015-05-30
2015-04-11 - 2015-04-11
2015-03-01 - 2015-03-02
2015-02-28 - 2015-02-28
2014-05-10 - 2014-05-10
2014-04-20 - 2014-04-20
2014-02-01 - 2014-02-22
2013-11-23 - 2013-11-23
2013-10-13 - 2013-10-19
2013-09-06 - 2013-09-14
2013-08-11 - 2013-08-31
2013-07-13 - 2013-07-23
2013-06-09 - 2013-06-09
2013-04-17 - 2013-04-21
2013-03-02 - 2013-03-02
2013-02-09 - 2013-02-23
2012-12-01 - 2012-12-29
2012-11-19 - 2012-11-28
2012-10-21 - 2012-10-21
2012-09-21 - 2012-09-21
2012-08-01 - 2012-08-03
2012-04-14 - 2012-04-14
2012-03-05 - 2012-03-05
2012-02-25 - 2012-02-26
2012-01-14 - 2012-01-28
2011-12-27 - 2011-12-27
2011-11-06 - 2011-11-20
2011-10-21 - 2011-10-29
2011-09-26 - 2011-09-26
2011-08-25 - 2011-08-27
2011-07-31 - 2011-07-31
2011-05-21 - 2011-05-21
2011-04-09 - 2011-04-21
2011-03-12 - 2011-03-12
2011-01-22 - 2011-01-31
2010-11-01 - 2010-11-10
2010-10-09 - 2010-10-12
2010-09-26 - 2010-09-30
2010-08-06 - 2010-08-28
2010-07-12 - 2010-07-25
2010-06-05 - 2010-06-19
2010-05-01 - 2010-05-30
2010-04-02 - 2010-04-24
2010-03-05 - 2010-03-26
2010-02-05 - 2010-02-26
2010-01-05 - 2010-01-27
2009-12-04 - 2009-12-29
2009-11-06 - 2009-11-27
2009-10-02 - 2009-10-30
2009-09-04 - 2009-09-25
2009-08-01 - 2009-08-30
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.