设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
     
  欧阳峰的blog
  以文会友,不亦乐乎!
我的名片
欧阳峰
注册日期: 2007-09-18
访问总量: 1,860,901 次
点击查看我的个人资料
Calendar
我的公告栏
本博客近期内不定期更新
最新发布
· 解码性别不平等——2023年诺贝尔
· 给电子运动拍照——2023年诺贝尔
· 银行和信息-2022年诺贝尔经济学
· 一个世纪的纠缠-2022年诺贝尔物
· 大繁至简:2021年物理诺贝尔
· 从相关性到因果性-2021年诺贝尔
· 机会平等与结果平等
友好链接
· 刘以栋:刘以栋的博客
· 高伐林:老高的博客
· 潜伏:潜伏的博客
· 2cents:2cents博客
· 伊萍:伊萍的多彩世界
· 谷语草鸣:谷语草鸣
· Beaubien2010:Beaubien2010的博
· 多思:多思的博客
· 汪翔:汪 翔
· 星辰的翅膀:星辰的翅膀
· 老秃:老秃笔侃山
· 水柔石刚:水柔石刚的博客
· 岑岚:岑岚的博客
· 枫苑梦客:梦中不知身是客
· 怡然:怡然博客
· 寄自美国:寄自美国的博客
· 椰子:椰风阵阵,思绪如河
· 山哥:山哥的文化广场
· 昭君:昭君的博客
分类目录
【旧贴回顾】
· 衔接量子与经典物理:2012年
· 数字通信介绍(5) 什么是MIMO?
· “免费”的代价
· 美国的收入差距:社会流动性(完
· 那是谁建的?谈谈大小政府之争
· 成功者的心态
· 政经随想(5)资本主义之后是什
· 亚洲传统价值在西方:财富还是包
【书山有路-心理篇(2)】
· 自律的本能
· 诚信的心理学
· 如何点燃天才的火花?
· 怎样对待老与死?(下)
· “双管齐下”的变革秘诀
· 实现自我,完成中年转变 -- 《中
· 成功有秘诀吗?《超人》读后
· 惊险小说中的上品 -- 《Ambler W
【书山有路-经济篇(2)】
· 大政府,小政府,聪明政府
· 回首金融危机的来龙去脉(下)
· 回首金融危机的来龙去脉 (上)
· 窥视右派的内心:读《美丽的美国
· 中国起飞的发动机 ——民工
· 介绍Peter Drucker
· 信息时代的新生态 – What Would
· 书评:《讨还资本主义的灵魂》
【书山有路-政治篇(2)】
· 一个犹太复国主义者的反思
· 从金融危机看政府的角色(下)
· 谁是乐善好施之人?
· 关于普世价值的随想
· 谈谈美国公知(4/4)
· 谈谈美国公知(3/4)
· 谈谈美国公知(2/4)
· 谈谈美国公知(1/4)
· 第三只眼看民主与专制
· 赖斯与她的自传《无上光荣》
【书山有路-传记篇(2)】
· 格林斯潘《动荡年月:新世界的冒
【学海无涯-数字通信】
· 关于数据权利的随想
· 数字通信介绍(5) 什么是MIMO?
· 数字通信介绍(4) OFDM为何如
· 数字通信介绍(3)信道编码
· 数字通信介绍(2)香农与信息论
· 数字通信介绍(1) 调制
【学海无涯-心理学(2)】
· 心态是衡量快乐的一杆秤
· 千里送鹅毛的心理学
【学海无涯-诺贝尔物理奖(2)】
· 给电子运动拍照——2023年诺贝尔
· 一个世纪的纠缠-2022年诺贝尔物
· 大繁至简:2021年物理诺贝尔
· 黑洞的神秘和神奇-2020年物
· 宇宙学中的理论和实验:2019年诺
· 别开生面的2018年诺贝尔物理奖
· 引力波探测:成就“不可能之任务
· 量子漩涡的奥妙-2016年物理诺贝
· 神秘的中微子
· 换灯泡,得诺奖
【政治经济-美国政治(2)】
· 机会平等与结果平等
· 我们的媒体怎么了?《美国大分裂
· 剖析美国国债难题:让数字说话
· 大政府能救美国吗?
【政治经济-美国教育(2)】
· 美国理科教育(5)教育改革话题
· 美国理科教育 (4) “不让一个
· 美国理科教育(3)成绩差距
· 谈谈美国理科教育(2)教育与国
【政治经济-美国经济】
· 关于美国经济的对话
· 奥巴马的赤字
【政治经济-国际政经】
· 阿富汗天上掉馅饼儿,福兮,祸兮
· 中国的优势在哪里?
· 关于美国核武新政策的随想
· 伊斯兰与西方文明:冲突还是和解
【政治经济-随想杂谈】
· 用事实说话:循证决策
· 关于维基解密与媒体的随想
· 谁打败了麦卡锡?
【政治经济-税法福利】
· 扯扯美国的“税务局丑闻”
· 关于税法数据的分析 (评《纽约
· 税季谈税
· 社会安全保险及其危机
【政治经济-健保改革(2)】
· “健保法案”为何“好事多磨”?
· 美国医疗保险:既太多又太少
· 健保法案解读(4)健保改革的目
· 健保法案解读(3)怎样从Medicar
· 健保法案解读(2)“公共选项”
【政治经济-健保改革(1)】
· 健保改革法案H.R.3962解析(1)
· 美国医疗服务真是倒数第一吗?
· 奥巴马能完成医疗改革大业吗?
· 旧文重贴:美国政治的下一个热点
【政治经济-金融危机(2)】
· 关于做空,赌博与趁火打劫的随想
· 从高盛的“欺骗”与“趁火打劫”
【政治经济-金融危机(1)】
· 冒险的代价:美国“信贷社危机”
· 旧贴重放:关于AIG副总裁辞职信
· 旧文重发:“奖金门”争论中震耳
· 华尔街的信用危机
【生活百感-心态心情(2)】
· 人到中年:从耕种到收获的过渡
【生活百感-子女教育(1)】
· 如何点燃天才的火花?
· 谈谈美国高中课外活动(下)
· 谈谈美国高中课外活动(上)
· 孩子该读文科还是理科?
· 中小学数学的存废之辩
· 虎妈猫妈,异途同归?
· 从“网上直播”引起的自杀谈起
· 育儿漫谈:“高指标人”和“多情
· 也谈大学教育:作为家长的期望和
【生活百感-新大陆点滴】
· 也谈一位“海二代”:国防部CIO
· 从“网上直播”引起的自杀谈起
· 民族主义是非谈
· 节日食谱:中式烤火鸡
· 美国进入“节俭时代”
【生活百感-人际社会】
· 谈谈《蜗居》中的三个男人
· 关于人际交流的模式: 何时需要较
· 参与公益,从娃娃抓起
· 科学与宗教之我见
【学海无涯-全球变暖(2)】
· 全球变暖的科学根据之检讨(7)其
· 全球变暖的科学根据之检讨(6)关
· 全球变暖的科学根据之检讨(5)全
【学海无涯-全球变暖(1)】
· 全球变暖的科学根据之检讨 (4)
· 全球变暖的科学根据之检讨 (3)
· 全球变暖的科学根据之检讨(2)
· 全球变暖的科学根据之检讨(1)
【学海无涯-博弈论】
· 也谈博弈
【学海无涯-科学方法】
【学海无涯-科普读物】
· 无所不在的“网络”
· 科学的未知与伪科学 -- 《科学的
【书山有路-科普篇(2)】
· 也论科普的风格 – 三本科普书的
· 人脑比电脑到底强在哪里?
· 无所不在的“网络”
· 科学的未知与伪科学 -- 《科学的
【历史纵横】
· 美国南北战争:到底是为了统一还
· 真相,正义与和解:“肯特屠杀”
· 谁打败了麦卡锡?
· 西雅图的“地下城”
【政治经济-美国贫困】
· 美国的救济陷阱
· 社会阶层分析的标尺:收入还是消
· 美国穷人:另外的百分之十五(下
· 美国穷人:另外的百分之十五(中
· 美国穷人:另外的百分之十五(上
【法律观察】
· 邦联旗与言论自由
· 美国最高法院关于GPS跟踪的判决
· 案例分析:“米兰达警告”与“毒
【好文欣赏】
· 好文欣赏:《糖水》
· 转载mendel文:《从“胎教”开始
· 甘阳:自由主义:贵族的还是平民
· 【转贴】朱学勤:金重远 复旦首
· 好文推荐:村外
· 酒到陈时味方醇
· 转贴:“專訪袁偉時:不恪守法治
· ZT: 铁腕戴上丝绒手套
· 血缘(转帖)
· 秦晖: 全球化的第三种可能
【政治经济-美国教育(1)】
· 美国理科教育(2)教育与国力(
· 谈谈美国中小学理科教育(1)关
· 谈谈美国中小学理科教育(1)关
· 从华府公立学校总监Michelle Rhe
【政治经济-美国政治(1)】
· 奥巴马2.0?
· 从华府公立学校总监Michelle Rhe
· 也谈工会
· 谈谈美国的民主制度:“一票定乾
【生活百感-心态心情(1)】
· 放暑假乐!休博到九月。
· 初秋随想
· 人生如流水,只有变化是永恒
· 人性与理性:你是“99一族”吗?
· 随感:后院的野猫
【生活百感-愚人节笑话】
· 祸中祸:日本核电站释放超级细菌
【学海无涯-心理学(1)】
· 诡异的数字暗示:参照效应
· “诱饵效应”和“心理相对论”
· 从“破釜沉舟”谈起
· 千里送鹅毛的心理学
【学海无涯-诺贝尔物理奖(1)】
· 诺贝尔物理奖介绍2007:巨磁阻和
· 闲谈CCD
· 闲谈光纤
【学海无涯-科技译文(2)】
· 引力究竟是什么?
【学海无涯-科技译文(1)】
· 大脑是怎样工作的?
· 人类终将访问火星吗?
· 战争是我们生物本性的归宿吗?
· 科学重要吗?
【书山有路-政治篇(1)】
· 自我推销的范文- 读奥巴马的《大
· 信仰与政治
· 伊斯兰与西方文明:冲突还是和解
· 《世界是平坦的》书评
【书山有路-心理篇(1)】
· 面对灾难,你准备好了吗?
· 完整大脑与后信息时代 《A Whole
【书山有路-科普篇(1)】
【书山有路-经济篇(1)】
· 古狗随想录(下):一统天下,“
· 古狗随想录 (上):“掌控中的
· 关于做空,赌博与趁火打劫的随想
· 信息时代的新生态 – What Would
【书山有路-文学篇(1)】
· 一扇管窥当代大学生心灵的窗户—
· 道可道,非常道 – 读《遥远的救
【书山有路-传记篇(1)】
· 华盛顿政治的一扇窗口:Tenet自
· 《食祷爱》:心灵疗伤的良方
· 股神巴菲特的人生 ——《滚雪球
· 洋“愚公”的故事 – 《Three Cu
【学海无涯】
· 关于数据权利的随想
· 随机对照试验与扶贫:2019年诺贝
· 宇宙学中的理论和实验:2019年诺
· 充满“科学元素”的2018年诺贝尔
· 别开生面的2018年诺贝尔物理奖
· 行为经济学和2017年诺贝尔经济学
· 引力波探测:成就“不可能之任务
· 关于认识论:涌现和贝叶斯法则
· 神秘的中微子
· 大数据经济学 (2015年诺贝尔经济
【政治经济】
· 川普走了,常态回来了吗?
· 拜登真能成为“团结美国”的总统
· 拜登:生逢其时的平庸候选人
· 我们的媒体怎么了?《美国大分裂
· 对“全民基本收入”的数学分析
· 杨安泽(Andrew Yang)和《对普
· 论保守派该投票克林顿
· LGBT与“宗教自由案”
· 华人和黑人:盟友还是对手?
· 奥巴马健保的新考验
【生活百感】
· 如何点燃天才的火花?
· 谈谈美国高中课外活动(下)
· 谈谈美国高中课外活动(上)
· 放暑假啦!休博到秋天
· 孩子该读文科还是理科?
· 休博到明年一月
· 停博一阵
· 也谈一位“海二代”:国防部CIO
· 纪念汶川地震五周年
· 中小学数学的存废之辩
【朝华午拾】
· 为什么调制解调器会有不同速度?
· 什么是网路电话?
· 旧文重贴:谈谈学习中的思考
· 菜鸟上路——我的第一份工
· 怀念敬爱的黄老师
· 感恩节前话感恩
· 数学竞赛与我
· 哲人讲座
【书山有路】
· 北欧模式与《北欧理论》
· 自律的本能
· 关于认识论:涌现和贝叶斯法则
· 性别差异与神经心理学
· 保守主义该怎样帮助穷人?
· 诚信的心理学
· 如何点燃天才的火花?
· 怎样对待老与死?(下)
· 怎样对待老与死?(上)
· 一个犹太复国主义者的反思
【学海无涯-诺贝尔经济奖】
· 解码性别不平等——2023年诺贝尔
· 银行和信息-2022年诺贝尔经济学
· 从相关性到因果性-2021年诺贝尔
· 拍卖中的信息和博弈-2020年
· 随机对照试验与扶贫:2019年诺贝
· 充满“科学元素”的2018年诺贝尔
· 行为经济学和2017年诺贝尔经济学
· 怎样制定好的合同?2016年诺贝尔
· 大数据经济学 (2015年诺贝尔经济
【政治经济:政经随感(1)】
· 简讯:美国竞选经费比往年减少
· 再谈科学的威力与局限
· 读奥巴马“国情咨文”有感
· 政经随想(5)资本主义之后是什
· 政经随想(4):民主与市场经济
· 政经随想(3)美国的末日到了吗
· 政经随想(2) 美国经济困境与全
· 政经随想(1)关于美国国债的几
【政治经济:亚裔爬藤(1)】
· 亚裔学子的大学门槛:几本有关书
· 虎妈猫妈,异途同归?
· 亚裔学子的大学门槛:统计证据一
· 亚裔学子:大学门槛格外高
【政治经济:亚裔爬藤(2)】
· 高院判决,平权与亚裔入学
· 控告哈佛歧视案讨论小结(转)
· 反抗种族歧视,何不从帮助亚裔子
· 亚洲传统价值在西方:财富还是包
【书山有路-心理篇(3)】
· 性别差异与神经心理学
· 怎样对待老与死?(上)
· 思维快慢道(下)
· 思维快慢道(中)
· 思维快慢道(上)
· 如何避免决策误区(下)
· 如何避免决策误区(上)
· 沟通技巧:“粘性学”(下)
· 沟通技巧:“粘性学”(上)
· 习惯的力量
【政治经济-12大选】
· 论保守派该投票克林顿
· 美国大选投票:除了“罗马”别无
· 谁动了Medicare的奶酪?(下)
· 谁动了Medicare的奶酪?(上)
· 那是谁建的?谈谈大小政府之争
· 正戏开场——简评美国两党全国大
【书山有路-宗教篇】
· 关于道德与宗教问题与网友的讨论
· 进化论是上帝的克星吗?(下)
· 进化论是上帝的克星吗?(上)
【政治经济-收入差距】
· 收入差别,市场经济与左右之争
· 保守主义该怎样帮助穷人?
· 美国的收入差距:社会流动性(完
· 美国的收入差距:政府能做什么?
· 美国收入差距的原因
· 美国的收入差距:谁是最富和最穷
· 美国的收入差距:中产阶级与贫穷
· 美国的收入不平等:非主流意见
· 美国收入不平等:引言与现状
【政治经济-美国华人】
· 华人和黑人:盟友还是对手?
· 亚裔传统月:关于美国亚裔的几个
【政治经济:政经随感(2)】
· LGBT与“宗教自由案”
· 奥巴马健保的新考验
· 美国的言论自由与政治正确
· 美国铁路面面观
· 提高执政效率:自适应(下)
· 提高执政效率:自适应(上)
· 谁是乐善好施之人?
· 美国中期选举:谁是赢家?
· 围观美国打老虎
· 美国教育体系中的“扶贫”措施
【书山有路-经济篇(3)】
· 《国家为何失败》读后
· 北欧模式与《北欧理论》
· 关于认识论:涌现和贝叶斯法则
· 从《大空头》看颠覆性创新
· 收入差别,市场经济与左右之争
· 保守主义该怎样帮助穷人?
· 从金融危机看政府的角色(上)
· 资本:贫富差距之源?(下)
· 资本:贫富差距之源?(中)
· 资本:贫富差距之源?(上)
【政治经济-2020大选】
· 川普走了,常态回来了吗?
· 拜登真能成为“团结美国”的总统
· 2020,美国保守派选民该挺谁?
· 拜登:生逢其时的平庸候选人
· 对“全民基本收入”的数学分析
存档目录
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
08/01/2021 - 08/31/2021
02/01/2021 - 02/28/2021
01/01/2021 - 01/31/2021
10/01/2020 - 10/31/2020
09/01/2020 - 09/30/2020
08/01/2020 - 08/31/2020
07/01/2020 - 07/31/2020
01/01/2020 - 01/31/2020
11/01/2019 - 11/30/2019
10/01/2019 - 10/31/2019
08/01/2019 - 08/31/2019
07/01/2019 - 07/31/2019
05/01/2017 - 05/31/2017
04/01/2017 - 04/30/2017
03/01/2017 - 03/31/2017
02/01/2017 - 02/28/2017
11/01/2016 - 11/30/2016
10/01/2016 - 10/31/2016
07/01/2016 - 07/31/2016
06/01/2016 - 06/30/2016
04/01/2016 - 04/30/2016
02/01/2016 - 02/29/2016
01/01/2016 - 01/31/2016
12/01/2015 - 12/31/2015
11/01/2015 - 11/30/2015
10/01/2015 - 10/31/2015
09/01/2015 - 09/30/2015
06/01/2015 - 06/30/2015
05/01/2015 - 05/31/2015
04/01/2015 - 04/30/2015
03/01/2015 - 03/31/2015
02/01/2015 - 02/28/2015
01/01/2015 - 01/31/2015
11/01/2014 - 11/30/2014
10/01/2014 - 10/31/2014
09/01/2014 - 09/30/2014
12/01/2013 - 12/31/2013
11/01/2013 - 11/30/2013
10/01/2013 - 10/31/2013
09/01/2013 - 09/30/2013
06/01/2013 - 06/30/2013
05/01/2013 - 05/31/2013
04/01/2013 - 04/30/2013
03/01/2013 - 03/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
11/01/2012 - 11/30/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
08/01/2012 - 08/31/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
12/01/2011 - 12/31/2011
11/01/2011 - 11/30/2011
10/01/2011 - 10/31/2011
09/01/2011 - 09/30/2011
08/01/2011 - 08/31/2011
07/01/2011 - 07/31/2011
06/01/2011 - 06/30/2011
04/01/2011 - 04/30/2011
03/01/2011 - 03/31/2011
02/01/2011 - 02/28/2011
01/01/2011 - 01/31/2011
12/01/2010 - 12/31/2010
11/01/2010 - 11/30/2010
10/01/2010 - 10/31/2010
09/01/2010 - 09/30/2010
07/01/2010 - 07/31/2010
06/01/2010 - 06/30/2010
05/01/2010 - 05/31/2010
04/01/2010 - 04/30/2010
03/01/2010 - 03/31/2010
02/01/2010 - 02/28/2010
01/01/2010 - 01/31/2010
12/01/2009 - 12/31/2009
11/01/2009 - 11/30/2009
10/01/2009 - 10/31/2009
09/01/2009 - 09/30/2009
08/01/2009 - 08/31/2009
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
中小学数学的存废之辩
   

最近《纽约时报》发表了一篇长篇评论,题目是《必须学代数吗?》(http://www.nytimes.com/2012/07/29/opinion/sunday/is-algebra-necessary.html?pagewanted=all,中文翻译可见

http://cn.nytimes.com/article/opinion/2012/08/08/c08algebra/ )作者认为中学数学太难学,致使许多学生辍学。而在现实社会中,代数以上的数学用到很少,而大多只是许多职业执照或入学的“门槛”。所以他认为,中学不应把代数作为必修课,而应该多教些更实用的知识。

先说句题外话。该文的作者海克(Andrew Hacker)是纽约皇后学院的政治学荣誉退休教授。他自称对数学是很精通的。但从这篇文章看,我觉得他的数学训练就颇有改善的空间。海克在陈述中的确用了不少统计和数字,但却没有坚韧的逻辑贯穿其中。那些所谓的“证据”只是为了制造“印象”而不是支持观点。更有趣的是,海克提出一个“实用数学”的例子:去了解通货膨胀指数(CPI)的算法。实际上,看一下有关文献就知道,CPI的算法远非一个简单的问题。目前存在着多种算法,每种都有背后的论证和数据支持。这些算法得出不同的通胀指数,从而影响到很多社会经济问题的结论。不懂代数的人也许能了解算法本身,但不可能比较各种算法的优劣来选择最适合自己问题的一种。可见,即使政治学教授,在数学上也是学无止境的。

好了,咱们言归正传。不出所料,海克的文章招来了大批反对意见(用该文题目搜寻一下便知)。大多数人认为,中学数学不仅是一门知识和技能,更是对于逻辑思维和抽象思维的训练,是任何人的基本训练中必需的部分。那么中学数学究竟是无谓的负担,还是必需的基本训练呢?

我的回答是:两者都对。中学数学的确是对于思维方法的重要训练,而且美国人,包括大众和专业人士,都可以得益于更多训练。我曾在美国一所一流大学中旁听过新生经济学课。在学习“边际收益等概念时,我对教授为了避开微积分而费的口舌深感同情。但另一方面,目前公立中小学的数学教育并未达到训练思维方法的目的。根据我自己孩子读书的经验和在中文学校教初中,高中竞赛数学的体会,我觉得美国中小学数学教育至少有以下三个问题。

首先,数学被教成割裂的概念。一般一个概念只在一个季度中涵盖。在季度测验后,就很少重新出现了。所以大多数孩子学数学好像熊瞎子捡棒子,边检边丢。而且学的时候也不知道为什么要学,以后有什么用,更是兴趣缺缺。最好的情况下,就算记住了所有学过的概念,也只是串成一条线而不是通过交叉联接变成一张网。这样一旦一个概念忘记了,就无法通过相关知识来恢复。相比中国,每年期末考试前有总复习,中学后期还有准备高考的复习时期。这样学生会多次接触同一个概念,特别是学了后面的知识后重新审视前面的,就容易有新的领悟和新的联想。

第二,美国数学教育虽然也讲证明,也要求学生解题要写过程,但对此并不重视。州里统考,SAT甚至很多数学竞赛都是只要求答数,不要求过程。这样学生就没有养成严格审视自己解题根据的习惯,更不会用批评的眼光去看别人的工作。这对训练思维方法是很大的遗憾。即使拿数学本身来说,只学定理不管证明也不是好办法。不仅定理忘了时无法自己推导出来,而且不容易领会不同知识之间的联系。例如我接触的初中高中学生,极少有人还知道一元二次方程的解是怎样推导出的。这样他们就不知道“凑平方”这个普遍性很强的方法,更不会把一元二次方程的解与二次函数的极值问题联系起来。

第三,美国数学课堂练习和作业题都很死板。只要你掌握了知识,根据老师例题依葫芦画瓢,就能按部就班做出。学生没有尝试各种方法甚至发明自己解法的经验。据说有人对美国名牌大学的学生作过调查,问他们对一道数学题尝试多久后会认为“太难”而放弃。平均的答案是五分钟。这在中国人看来是懒惰,缺乏执着的表现。其实了解美国教育后会发现这很自然。以他们的训练,五分钟内想不出解法的话,接下去也没什么招数可以再试了。这种教法给学生的印象是:数学就是一套死板的解题技术步骤。如果生活中不需要解书本上那些题,这些技术就毫无用处。

所以在我看来,美国的中小学数学,至少在公立学校,是有很多不足的。难怪连堂堂大教授也认为数学没有用。并非数学不该学,而是学得不得法罢了。那么我们华人家长要弥补这些缺点,可以做些什么呢?以下是我的一些建议。具体的做法信息,网上各种子女教育论坛中有很多,我就不重复了。网友愿意继续交流的,我也欢迎。

最低层次上,可以多做些题。要综合题,而且要写出解题过程。当然要系统重做一遍中学数学题,孩子和家长都要花巨大努力。但即使只做一部分(例如每周两三小时,坚持一年),也有很大收益。可以让孩子懂得对自己应该有怎样的要求。

对于课堂学习觉得轻松的孩子,可以参加各种数学竞赛。美国的数学竞赛绝大多数是由学校组织参加的。但如果学校不支持的话,自己也能想办法参加。如中学的Mathcount可以自己组织个人或小组,以学校的名义参加,只要跟校长打个招呼,别与其他小组冲突就行了(因为每个学校有人数限制)。高中的American Math Competitions (AMC)是在学校考试的。但也有大学教授提供个别学生参赛的考场,可以到美国数学会的网站上去找。即使不参加,用那些竞赛的考古题(通常带答案和解法)做练习也很不错。这样可以把不同时间学的知识串起来,也训练自己解题能力。做通那些竞赛题,对思维训练大有好处。

在美国学校的文化中,喜欢数学的孩子常被看作异类而孤立。所以让这些孩子找到“同志”也是很重要的。美国有几个专门教授数学的夏令营,要通过考试和老师推荐才能加入。平时也有网上的数学课,附带有讨论园地。孩子参加这类活动不仅能学到知识开阔视野,还能交到志同道合的朋友,相互切磋竞争,把学数学和社交结合起来。

许多华人家长对有数学才能的孩子往往采用“超前学习”的方法。我觉得这方面要慎重。小时候超前是好事,因为知识不到一定程度,其他都谈不上。但到了进高中前后,就不能一概而论了。我觉得微积分之类,通过在物理中的应用会更容易理解。如果只是抽象地学,容易发生一知半解的情形,除非教的人特别有经验。另一方面,初等数学里可以加深,拓广的地方也很多。几何本身就是无止境的。代数中的三角,复数等课堂上教的也极其有限。在这些地方引导学有余力的孩子去开拓自学,也许比向前赶路更有得益。当然,这些都要看孩子自己的兴趣和能力,不必与别人攀比。

人生一世所需知识,从学校学的只是极少数而已。而学校最重要的是培养能力:沟通能力,思考能力和自学能力。而数学至少对思考能力和自学能力都有很高价值。咱们华人家长,自身数理基础就强,利用这个优势帮助孩子也就是顺理成章的了。至于美国学校,“放弃数学”只是少数人说法,不必多虑。但如何改善数学教育,让学生真正悟到数学真谛,却是任重道远。在这个问题上,咱们华人是否能做出超越自己子女的贡献,也是值得深思的问题。

 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.