设万维读者为首页 万维读者网 -- 全球华人的精神家园 广告服务 联系我们 关于万维
 
首  页 新  闻 视  频 博  客 论  坛 分类广告 购  物
搜索>> 发表日志 控制面板 个人相册 给我留言
帮助 退出
     
  欧阳峰的blog
  以文会友,不亦乐乎!
我的名片
欧阳峰
注册日期: 2007-09-18
访问总量: 1,860,882 次
点击查看我的个人资料
Calendar
我的公告栏
本博客近期内不定期更新
最新发布
· 解码性别不平等——2023年诺贝尔
· 给电子运动拍照——2023年诺贝尔
· 银行和信息-2022年诺贝尔经济学
· 一个世纪的纠缠-2022年诺贝尔物
· 大繁至简:2021年物理诺贝尔
· 从相关性到因果性-2021年诺贝尔
· 机会平等与结果平等
友好链接
· 刘以栋:刘以栋的博客
· 高伐林:老高的博客
· 潜伏:潜伏的博客
· 2cents:2cents博客
· 伊萍:伊萍的多彩世界
· 谷语草鸣:谷语草鸣
· Beaubien2010:Beaubien2010的博
· 多思:多思的博客
· 汪翔:汪 翔
· 星辰的翅膀:星辰的翅膀
· 老秃:老秃笔侃山
· 水柔石刚:水柔石刚的博客
· 岑岚:岑岚的博客
· 枫苑梦客:梦中不知身是客
· 怡然:怡然博客
· 寄自美国:寄自美国的博客
· 椰子:椰风阵阵,思绪如河
· 山哥:山哥的文化广场
· 昭君:昭君的博客
分类目录
【旧贴回顾】
· 衔接量子与经典物理:2012年
· 数字通信介绍(5) 什么是MIMO?
· “免费”的代价
· 美国的收入差距:社会流动性(完
· 那是谁建的?谈谈大小政府之争
· 成功者的心态
· 政经随想(5)资本主义之后是什
· 亚洲传统价值在西方:财富还是包
【书山有路-心理篇(2)】
· 自律的本能
· 诚信的心理学
· 如何点燃天才的火花?
· 怎样对待老与死?(下)
· “双管齐下”的变革秘诀
· 实现自我,完成中年转变 -- 《中
· 成功有秘诀吗?《超人》读后
· 惊险小说中的上品 -- 《Ambler W
【书山有路-经济篇(2)】
· 大政府,小政府,聪明政府
· 回首金融危机的来龙去脉(下)
· 回首金融危机的来龙去脉 (上)
· 窥视右派的内心:读《美丽的美国
· 中国起飞的发动机 ——民工
· 介绍Peter Drucker
· 信息时代的新生态 – What Would
· 书评:《讨还资本主义的灵魂》
【书山有路-政治篇(2)】
· 一个犹太复国主义者的反思
· 从金融危机看政府的角色(下)
· 谁是乐善好施之人?
· 关于普世价值的随想
· 谈谈美国公知(4/4)
· 谈谈美国公知(3/4)
· 谈谈美国公知(2/4)
· 谈谈美国公知(1/4)
· 第三只眼看民主与专制
· 赖斯与她的自传《无上光荣》
【书山有路-传记篇(2)】
· 格林斯潘《动荡年月:新世界的冒
【学海无涯-数字通信】
· 关于数据权利的随想
· 数字通信介绍(5) 什么是MIMO?
· 数字通信介绍(4) OFDM为何如
· 数字通信介绍(3)信道编码
· 数字通信介绍(2)香农与信息论
· 数字通信介绍(1) 调制
【学海无涯-心理学(2)】
· 心态是衡量快乐的一杆秤
· 千里送鹅毛的心理学
【学海无涯-诺贝尔物理奖(2)】
· 给电子运动拍照——2023年诺贝尔
· 一个世纪的纠缠-2022年诺贝尔物
· 大繁至简:2021年物理诺贝尔
· 黑洞的神秘和神奇-2020年物
· 宇宙学中的理论和实验:2019年诺
· 别开生面的2018年诺贝尔物理奖
· 引力波探测:成就“不可能之任务
· 量子漩涡的奥妙-2016年物理诺贝
· 神秘的中微子
· 换灯泡,得诺奖
【政治经济-美国政治(2)】
· 机会平等与结果平等
· 我们的媒体怎么了?《美国大分裂
· 剖析美国国债难题:让数字说话
· 大政府能救美国吗?
【政治经济-美国教育(2)】
· 美国理科教育(5)教育改革话题
· 美国理科教育 (4) “不让一个
· 美国理科教育(3)成绩差距
· 谈谈美国理科教育(2)教育与国
【政治经济-美国经济】
· 关于美国经济的对话
· 奥巴马的赤字
【政治经济-国际政经】
· 阿富汗天上掉馅饼儿,福兮,祸兮
· 中国的优势在哪里?
· 关于美国核武新政策的随想
· 伊斯兰与西方文明:冲突还是和解
【政治经济-随想杂谈】
· 用事实说话:循证决策
· 关于维基解密与媒体的随想
· 谁打败了麦卡锡?
【政治经济-税法福利】
· 扯扯美国的“税务局丑闻”
· 关于税法数据的分析 (评《纽约
· 税季谈税
· 社会安全保险及其危机
【政治经济-健保改革(2)】
· “健保法案”为何“好事多磨”?
· 美国医疗保险:既太多又太少
· 健保法案解读(4)健保改革的目
· 健保法案解读(3)怎样从Medicar
· 健保法案解读(2)“公共选项”
【政治经济-健保改革(1)】
· 健保改革法案H.R.3962解析(1)
· 美国医疗服务真是倒数第一吗?
· 奥巴马能完成医疗改革大业吗?
· 旧文重贴:美国政治的下一个热点
【政治经济-金融危机(2)】
· 关于做空,赌博与趁火打劫的随想
· 从高盛的“欺骗”与“趁火打劫”
【政治经济-金融危机(1)】
· 冒险的代价:美国“信贷社危机”
· 旧贴重放:关于AIG副总裁辞职信
· 旧文重发:“奖金门”争论中震耳
· 华尔街的信用危机
【生活百感-心态心情(2)】
· 人到中年:从耕种到收获的过渡
【生活百感-子女教育(1)】
· 如何点燃天才的火花?
· 谈谈美国高中课外活动(下)
· 谈谈美国高中课外活动(上)
· 孩子该读文科还是理科?
· 中小学数学的存废之辩
· 虎妈猫妈,异途同归?
· 从“网上直播”引起的自杀谈起
· 育儿漫谈:“高指标人”和“多情
· 也谈大学教育:作为家长的期望和
【生活百感-新大陆点滴】
· 也谈一位“海二代”:国防部CIO
· 从“网上直播”引起的自杀谈起
· 民族主义是非谈
· 节日食谱:中式烤火鸡
· 美国进入“节俭时代”
【生活百感-人际社会】
· 谈谈《蜗居》中的三个男人
· 关于人际交流的模式: 何时需要较
· 参与公益,从娃娃抓起
· 科学与宗教之我见
【学海无涯-全球变暖(2)】
· 全球变暖的科学根据之检讨(7)其
· 全球变暖的科学根据之检讨(6)关
· 全球变暖的科学根据之检讨(5)全
【学海无涯-全球变暖(1)】
· 全球变暖的科学根据之检讨 (4)
· 全球变暖的科学根据之检讨 (3)
· 全球变暖的科学根据之检讨(2)
· 全球变暖的科学根据之检讨(1)
【学海无涯-博弈论】
· 也谈博弈
【学海无涯-科学方法】
【学海无涯-科普读物】
· 无所不在的“网络”
· 科学的未知与伪科学 -- 《科学的
【书山有路-科普篇(2)】
· 也论科普的风格 – 三本科普书的
· 人脑比电脑到底强在哪里?
· 无所不在的“网络”
· 科学的未知与伪科学 -- 《科学的
【历史纵横】
· 美国南北战争:到底是为了统一还
· 真相,正义与和解:“肯特屠杀”
· 谁打败了麦卡锡?
· 西雅图的“地下城”
【政治经济-美国贫困】
· 美国的救济陷阱
· 社会阶层分析的标尺:收入还是消
· 美国穷人:另外的百分之十五(下
· 美国穷人:另外的百分之十五(中
· 美国穷人:另外的百分之十五(上
【法律观察】
· 邦联旗与言论自由
· 美国最高法院关于GPS跟踪的判决
· 案例分析:“米兰达警告”与“毒
【好文欣赏】
· 好文欣赏:《糖水》
· 转载mendel文:《从“胎教”开始
· 甘阳:自由主义:贵族的还是平民
· 【转贴】朱学勤:金重远 复旦首
· 好文推荐:村外
· 酒到陈时味方醇
· 转贴:“專訪袁偉時:不恪守法治
· ZT: 铁腕戴上丝绒手套
· 血缘(转帖)
· 秦晖: 全球化的第三种可能
【政治经济-美国教育(1)】
· 美国理科教育(2)教育与国力(
· 谈谈美国中小学理科教育(1)关
· 谈谈美国中小学理科教育(1)关
· 从华府公立学校总监Michelle Rhe
【政治经济-美国政治(1)】
· 奥巴马2.0?
· 从华府公立学校总监Michelle Rhe
· 也谈工会
· 谈谈美国的民主制度:“一票定乾
【生活百感-心态心情(1)】
· 放暑假乐!休博到九月。
· 初秋随想
· 人生如流水,只有变化是永恒
· 人性与理性:你是“99一族”吗?
· 随感:后院的野猫
【生活百感-愚人节笑话】
· 祸中祸:日本核电站释放超级细菌
【学海无涯-心理学(1)】
· 诡异的数字暗示:参照效应
· “诱饵效应”和“心理相对论”
· 从“破釜沉舟”谈起
· 千里送鹅毛的心理学
【学海无涯-诺贝尔物理奖(1)】
· 诺贝尔物理奖介绍2007:巨磁阻和
· 闲谈CCD
· 闲谈光纤
【学海无涯-科技译文(2)】
· 引力究竟是什么?
【学海无涯-科技译文(1)】
· 大脑是怎样工作的?
· 人类终将访问火星吗?
· 战争是我们生物本性的归宿吗?
· 科学重要吗?
【书山有路-政治篇(1)】
· 自我推销的范文- 读奥巴马的《大
· 信仰与政治
· 伊斯兰与西方文明:冲突还是和解
· 《世界是平坦的》书评
【书山有路-心理篇(1)】
· 面对灾难,你准备好了吗?
· 完整大脑与后信息时代 《A Whole
【书山有路-科普篇(1)】
【书山有路-经济篇(1)】
· 古狗随想录(下):一统天下,“
· 古狗随想录 (上):“掌控中的
· 关于做空,赌博与趁火打劫的随想
· 信息时代的新生态 – What Would
【书山有路-文学篇(1)】
· 一扇管窥当代大学生心灵的窗户—
· 道可道,非常道 – 读《遥远的救
【书山有路-传记篇(1)】
· 华盛顿政治的一扇窗口:Tenet自
· 《食祷爱》:心灵疗伤的良方
· 股神巴菲特的人生 ——《滚雪球
· 洋“愚公”的故事 – 《Three Cu
【学海无涯】
· 关于数据权利的随想
· 随机对照试验与扶贫:2019年诺贝
· 宇宙学中的理论和实验:2019年诺
· 充满“科学元素”的2018年诺贝尔
· 别开生面的2018年诺贝尔物理奖
· 行为经济学和2017年诺贝尔经济学
· 引力波探测:成就“不可能之任务
· 关于认识论:涌现和贝叶斯法则
· 神秘的中微子
· 大数据经济学 (2015年诺贝尔经济
【政治经济】
· 川普走了,常态回来了吗?
· 拜登真能成为“团结美国”的总统
· 拜登:生逢其时的平庸候选人
· 我们的媒体怎么了?《美国大分裂
· 对“全民基本收入”的数学分析
· 杨安泽(Andrew Yang)和《对普
· 论保守派该投票克林顿
· LGBT与“宗教自由案”
· 华人和黑人:盟友还是对手?
· 奥巴马健保的新考验
【生活百感】
· 如何点燃天才的火花?
· 谈谈美国高中课外活动(下)
· 谈谈美国高中课外活动(上)
· 放暑假啦!休博到秋天
· 孩子该读文科还是理科?
· 休博到明年一月
· 停博一阵
· 也谈一位“海二代”:国防部CIO
· 纪念汶川地震五周年
· 中小学数学的存废之辩
【朝华午拾】
· 为什么调制解调器会有不同速度?
· 什么是网路电话?
· 旧文重贴:谈谈学习中的思考
· 菜鸟上路——我的第一份工
· 怀念敬爱的黄老师
· 感恩节前话感恩
· 数学竞赛与我
· 哲人讲座
【书山有路】
· 北欧模式与《北欧理论》
· 自律的本能
· 关于认识论:涌现和贝叶斯法则
· 性别差异与神经心理学
· 保守主义该怎样帮助穷人?
· 诚信的心理学
· 如何点燃天才的火花?
· 怎样对待老与死?(下)
· 怎样对待老与死?(上)
· 一个犹太复国主义者的反思
【学海无涯-诺贝尔经济奖】
· 解码性别不平等——2023年诺贝尔
· 银行和信息-2022年诺贝尔经济学
· 从相关性到因果性-2021年诺贝尔
· 拍卖中的信息和博弈-2020年
· 随机对照试验与扶贫:2019年诺贝
· 充满“科学元素”的2018年诺贝尔
· 行为经济学和2017年诺贝尔经济学
· 怎样制定好的合同?2016年诺贝尔
· 大数据经济学 (2015年诺贝尔经济
【政治经济:政经随感(1)】
· 简讯:美国竞选经费比往年减少
· 再谈科学的威力与局限
· 读奥巴马“国情咨文”有感
· 政经随想(5)资本主义之后是什
· 政经随想(4):民主与市场经济
· 政经随想(3)美国的末日到了吗
· 政经随想(2) 美国经济困境与全
· 政经随想(1)关于美国国债的几
【政治经济:亚裔爬藤(1)】
· 亚裔学子的大学门槛:几本有关书
· 虎妈猫妈,异途同归?
· 亚裔学子的大学门槛:统计证据一
· 亚裔学子:大学门槛格外高
【政治经济:亚裔爬藤(2)】
· 高院判决,平权与亚裔入学
· 控告哈佛歧视案讨论小结(转)
· 反抗种族歧视,何不从帮助亚裔子
· 亚洲传统价值在西方:财富还是包
【书山有路-心理篇(3)】
· 性别差异与神经心理学
· 怎样对待老与死?(上)
· 思维快慢道(下)
· 思维快慢道(中)
· 思维快慢道(上)
· 如何避免决策误区(下)
· 如何避免决策误区(上)
· 沟通技巧:“粘性学”(下)
· 沟通技巧:“粘性学”(上)
· 习惯的力量
【政治经济-12大选】
· 论保守派该投票克林顿
· 美国大选投票:除了“罗马”别无
· 谁动了Medicare的奶酪?(下)
· 谁动了Medicare的奶酪?(上)
· 那是谁建的?谈谈大小政府之争
· 正戏开场——简评美国两党全国大
【书山有路-宗教篇】
· 关于道德与宗教问题与网友的讨论
· 进化论是上帝的克星吗?(下)
· 进化论是上帝的克星吗?(上)
【政治经济-收入差距】
· 收入差别,市场经济与左右之争
· 保守主义该怎样帮助穷人?
· 美国的收入差距:社会流动性(完
· 美国的收入差距:政府能做什么?
· 美国收入差距的原因
· 美国的收入差距:谁是最富和最穷
· 美国的收入差距:中产阶级与贫穷
· 美国的收入不平等:非主流意见
· 美国收入不平等:引言与现状
【政治经济-美国华人】
· 华人和黑人:盟友还是对手?
· 亚裔传统月:关于美国亚裔的几个
【政治经济:政经随感(2)】
· LGBT与“宗教自由案”
· 奥巴马健保的新考验
· 美国的言论自由与政治正确
· 美国铁路面面观
· 提高执政效率:自适应(下)
· 提高执政效率:自适应(上)
· 谁是乐善好施之人?
· 美国中期选举:谁是赢家?
· 围观美国打老虎
· 美国教育体系中的“扶贫”措施
【书山有路-经济篇(3)】
· 《国家为何失败》读后
· 北欧模式与《北欧理论》
· 关于认识论:涌现和贝叶斯法则
· 从《大空头》看颠覆性创新
· 收入差别,市场经济与左右之争
· 保守主义该怎样帮助穷人?
· 从金融危机看政府的角色(上)
· 资本:贫富差距之源?(下)
· 资本:贫富差距之源?(中)
· 资本:贫富差距之源?(上)
【政治经济-2020大选】
· 川普走了,常态回来了吗?
· 拜登真能成为“团结美国”的总统
· 2020,美国保守派选民该挺谁?
· 拜登:生逢其时的平庸候选人
· 对“全民基本收入”的数学分析
存档目录
02/01/2024 - 02/29/2024
01/01/2024 - 01/31/2024
12/01/2023 - 12/31/2023
11/01/2023 - 11/30/2023
08/01/2021 - 08/31/2021
02/01/2021 - 02/28/2021
01/01/2021 - 01/31/2021
10/01/2020 - 10/31/2020
09/01/2020 - 09/30/2020
08/01/2020 - 08/31/2020
07/01/2020 - 07/31/2020
01/01/2020 - 01/31/2020
11/01/2019 - 11/30/2019
10/01/2019 - 10/31/2019
08/01/2019 - 08/31/2019
07/01/2019 - 07/31/2019
05/01/2017 - 05/31/2017
04/01/2017 - 04/30/2017
03/01/2017 - 03/31/2017
02/01/2017 - 02/28/2017
11/01/2016 - 11/30/2016
10/01/2016 - 10/31/2016
07/01/2016 - 07/31/2016
06/01/2016 - 06/30/2016
04/01/2016 - 04/30/2016
02/01/2016 - 02/29/2016
01/01/2016 - 01/31/2016
12/01/2015 - 12/31/2015
11/01/2015 - 11/30/2015
10/01/2015 - 10/31/2015
09/01/2015 - 09/30/2015
06/01/2015 - 06/30/2015
05/01/2015 - 05/31/2015
04/01/2015 - 04/30/2015
03/01/2015 - 03/31/2015
02/01/2015 - 02/28/2015
01/01/2015 - 01/31/2015
11/01/2014 - 11/30/2014
10/01/2014 - 10/31/2014
09/01/2014 - 09/30/2014
12/01/2013 - 12/31/2013
11/01/2013 - 11/30/2013
10/01/2013 - 10/31/2013
09/01/2013 - 09/30/2013
06/01/2013 - 06/30/2013
05/01/2013 - 05/31/2013
04/01/2013 - 04/30/2013
03/01/2013 - 03/31/2013
02/01/2013 - 02/28/2013
01/01/2013 - 01/31/2013
11/01/2012 - 11/30/2012
10/01/2012 - 10/31/2012
09/01/2012 - 09/30/2012
08/01/2012 - 08/31/2012
05/01/2012 - 05/31/2012
04/01/2012 - 04/30/2012
03/01/2012 - 03/31/2012
02/01/2012 - 02/29/2012
01/01/2012 - 01/31/2012
12/01/2011 - 12/31/2011
11/01/2011 - 11/30/2011
10/01/2011 - 10/31/2011
09/01/2011 - 09/30/2011
08/01/2011 - 08/31/2011
07/01/2011 - 07/31/2011
06/01/2011 - 06/30/2011
04/01/2011 - 04/30/2011
03/01/2011 - 03/31/2011
02/01/2011 - 02/28/2011
01/01/2011 - 01/31/2011
12/01/2010 - 12/31/2010
11/01/2010 - 11/30/2010
10/01/2010 - 10/31/2010
09/01/2010 - 09/30/2010
07/01/2010 - 07/31/2010
06/01/2010 - 06/30/2010
05/01/2010 - 05/31/2010
04/01/2010 - 04/30/2010
03/01/2010 - 03/31/2010
02/01/2010 - 02/28/2010
01/01/2010 - 01/31/2010
12/01/2009 - 12/31/2009
11/01/2009 - 11/30/2009
10/01/2009 - 10/31/2009
09/01/2009 - 09/30/2009
08/01/2009 - 08/31/2009
发表评论
作者:
用户名: 密码: 您还不是博客/论坛用户?现在就注册!
     
评论:
闲谈CCD
   你知道什么是“电荷耦合器件”(Charge Coupled Device)吗?如果你拥有一台摄像机或数字照相机,这个有着奇怪名字的元件就在为你效劳。不过人们通常以缩写来称呼它:CCD。CCD能把光学影像转换成电子信号。不仅是摄像机,照相机这些家用电器中CCD唱着主角,而且在天文望远镜和很多科学仪器中也有它的身影。 CCD的原理,要从半导体谈起。我们都知道,固体分为绝缘体,导体和半导体。在固体中,有一部分电子不是束缚在某个原子的周围,而是在整个固体中间“游荡”。但这些电子可能的状态是有限的,而且每个状态最多只能有一个电子占据。这就好像一个电影院,观众可以任意调换座位,但一个座位不能挤两个人。导体,就好像电影院里有空位。这样观众通过换座位就能跑来跑去,我们就会看到电子的移动,也就是电流。绝缘体,就是观众正好坐满了全部座位。这样大家都动不了,也就不会有电流。半导体呢,它和绝缘体一样也没有空位子。但是观众比较容易站起来,就有了可以自由移动的人和空着的位置。因为这个差别,半导体就有了很多奇妙的性质。 CCD感光是利用了半导体的光电效应。当电子吸收光子时,就会得到附加能量而跳入高能级,相当于观众从座位上站起来。如果有外加电场的话,那些“获得自由”的观众会被拉到别处而与“空椅子”分离,就不能再坐下来。所以,入射光会在半导体里产生自由电子,其数量与光强(更严格地说是光子数)成正比。这就是半导体的光电效应。最普通的半导体材料是硅。从红外到可见光到紫外线都能在硅中产生光电效应。 所以,基本的半导体影像感受器件是这样的:在半导体材料中通过一定的内部构造和电极,把表面分成一个个小格子,称为“像素”(pixel)。电子不能随便跑到别的像素去。在曝光后,每个像素中的电子数量就正比于接受的光强度。这样,只要把这些电子的数量读取出来,就能重现光的影像了。 但是一个感受器可以有上百万个像素。如果每个像素都有一套读取电路,整个器件就会很复杂。CCD的聪明之处,就在于一种“传送带”式的读取方式。在CCD器件中,像素之间的电子隔离是由一些电极控制的。通过加上适当的电压,可以把一个像素中的电子转移到相邻的像素。这样,每个像素既在曝光时担任收集光电子的功能,又在读取时扮演“传送带”的角色。通过像素之间的“接力”,最终把每个像素收集到的光电子送到读取电路,转化成电压。这种“串行”的读取方式花的时间长(每个时钟周期只能读取一个像素),但只需要一个读取电路,对早期的半导体制造水平来说是决定性的优势。下面的图就是这个电荷转移的过程的一个例子。【注一】这里,一个像素里的电子,通过三步转移,到达下一个像素。
但是如果在电荷传送的过程中继续曝光,同样的光信号就会被记录在代表不同像素的“电荷包”中,而导致影像模糊。这个问题由一个叫做“帧转移(Frame Transfer)”的技术来解决。在CCD芯片上,制造两个同样的像素区。一个用来感光,另一个则被遮光材料屏蔽起来。在读取时,感光产生的电子被并行地(一步)转移到第二个像素区,然后再用串行的方法慢慢读出来。在这同时,第一个像素区又可以对下一幅影像曝光了。还有一个办法,就是把这两个像素区一行隔一行地排列。这样两个区之间的转移就更快。这种结构叫做“行间转移(interline)”。除了转移更快(从而可以支持更高速度的电子快门)以外,行间转移还有个好处就是芯片只要与曝光区域一样大就行了,而不需要制造另一个专门的影像储存区域而增加成本。当然,在曝光区只有一半的面积真正接受光信号,另一半面积是被屏蔽掉的。为了增加采光效率,很多产品在芯片表面加上微透镜阵列,把入射光聚焦到感光的区域去。这样采光效率可以相当于全面积的90%了。 CCD本身并不能感受彩色。为了记录彩色图像,我们使用与现有彩色电视同样的方法,即使用红,绿,蓝三种原色的组合来重现颜色。在记录影像时,可以有两种方法。一种是用分光棱镜的方法把三种原色成分投射到三个CCD感光器件上。另一种是在同一个CCD芯片上,在不同像素上加上不同的滤色片,让它们记录不同原色的光强。下图就显示一种常用的滤色片排列方式。【注二】近年来还出现了一种新技术称为Foveon。 它利用各种颜色的光在硅材料中穿透深度不同,制作三层感光区来收集三种原色的光。
以上介绍了CCD的基本工作原理。作为消费者,最关心的还是最后的成像质量了。那么CCD的哪些指标会影响到照相机和摄像机的成像质量呢? 最广为人知的指标,就是分辨率了。分辨率就是CCD上像素的数量,可以按长,宽来标定(如3072乘2304)或总数(如7兆)。图像的细节是靠像素来记录的。所以像素数量越大,能记录的细节也越多。但是最终的分辨率还与光学系统(镜头)的质量有关。所以对于便宜的照相机,镜头的质量不会很好,追求CCD的高像素数就没有太大意义。另一方面,我们还要看照片最后显示的效果。如果在屏幕上显示的话,一般能达到1280乘1024的分辨率就不错了,通常通过Email或网站传播的照片因为数据量的限制,分辨率还要更低。如果打印的话,通常分辨率是每英寸300象素。所以如果打印整张纸(8乘11英寸)的话,需要的分辨率是2400乘3300。如果打印通常照片尺寸(4乘5英寸)的话,需要的分辨率是1200乘1500 。【注三】而现在中档相机的象素数可以达到4320乘3240 。可见,这样的分辨率只有在特别放大照片或拍完后裁减出局部等情况下才有意义。另一方面,在后期处理阶段可以把照片中的像素合并起来而提高其他性能(如提高动态范围或减小噪声)。当然这又涉及到图像处理的基本知识了。 另一个重要指标是灵敏度,也就是CCD能探测的最低光强度。灵敏度是由“暗电子”限制的。在没有光照的情况下,由于热运动和晶体中的缺陷,CCD内也会出现一些自由电子,称为暗电子。暗电子的数量与曝光时间成正比。只有光照产生的电子(光电子)数远远高于暗电子数时,我们才能精确地测量光强。科学仪器上用的CCD可以通过低温操作来减少暗电子数,提高灵敏度。但消费者用的照相机,暗电子的数量就基本上是物理和工艺所决定的了。在同样条件下,像素的面积越大,灵敏度就越高。(其中的原因这里就不说了。)所以高级的照相机用的CCD尺寸都比较大。当然,CCD越大,价格也就越贵。 灵敏度的反面是饱和光强。当入射光太强或曝光时间太长时,光电子数量太多,就会填满了像素的空间而漏到衬底中去。这样,读出的电信号就不会随着入射光的增加而继续增加。这就是饱和现象。如果以天空为背景拍人像,往往天上的云彩就没有层次。这就是饱和的缘故。饱和光强与最低光强的比值叫做动态范围。动态范围越大,拍出的照片从暗部到亮部的层次就越丰富。一般来说,CCD像素的面积越大,动态范围也就越大。早期的CCD元件还有散焦(blooming)现象,也就是一个特别亮的像素,它的光电子会溢出到邻近像素去,造成一个亮斑或一条亮线。比较新的产品应该没有这个问题了。 还有一个指标是噪声,也就是读出的数字与入射光量之间的误差。CCD有固定噪声和随机噪声。固定噪声是由背景信号(也就是前面说的暗电子)和光/电转换效率在像素之间的差别引起的。它是可以测量和预计的,所以可以通过算法来修正。【注四】随机噪声是感光过程和读出过程中产生的,不可预计的噪声。严重的时候,它会使得影像显得粗糙不清。 应该指出的是,对于家用的照相机来说,通常的性能列表都不直接给出CCD的参数。这是因为相机并不是直接输出CCD所读取的图像,而是对它进行了很多处理。例如,照相机可以提供高灵敏度(高ISO值)。而实际上这只是提高了读出电路的增益,而CCD则工作在低光条件下。所以这样照出的照片亮度虽然不错,但噪声很大。又如动态范围(每个像素的比特数)是由图像文档格式决定的,并不一定反映CCD的真正性能。有的照相机可连续以不同曝光时间连拍几张照片,然后把这些照片中曝光合适的像素拼成最后照片,这样可以达到非常高的动态范围。但是归根结底,这些处理都是在各种性能参数之间权衡,提高了一个就降低了另一个。只有采用了真正高性能的CCD元件,才能同时提高各种性能参数。所以要认真挑选相机的话,有必要弄清它所使用的CCD型号,去比较一下CCD本身的性能参数。 除了CCD以外,还有一种常用的感光元件称为CMOS感光元件。CMOS的感光原理与CCD相同,但读取方式不同。它不采用“传送带”的方式,而是每个像素有自己的读出电路。这种芯片本身比CCD复杂,但所需的外围电路(驱动电路)很简单,可以把整个照相机做在一个芯片上。在发展初期,CMOS的性能价格比不如CCD,只是用在一些特殊的场合。随着半导体制造工艺的发展,现在两者已经互有长短了。特别是在大面积的感光元件中,CMOS具有功耗低的优势。现在,CMOS也用在各种级别的数字照相机中。 CCD取代胶卷,不但使得我们拍摄和传播照片更为方便,还使得小型,低价的照相机成为可能。现在几乎所有电子装置如手机,掌上电脑等都带有照相机。照相机如此普及便捷,给我们的生活带来了很多新的机会和新的挑战。所以说CCD是改变人类生活的重大发明之一,一点也不过分。 【注一】 本图来自http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/images/threephase.jpg 【注二】 本图来自http://en.wikipedia.org/wiki/File:Bayer_pattern_on_sensor.svg 【注三】 对于放得更大的照片,通常不需要每英寸300像素这样的分辨率,因为这些照片是用来远看的,人眼在远距离达不到这样的分辨率。 【注四】 暗电子的平均值虽然可以预计和修正,但在每一幅照片中实际的暗电子数量是有涨落的。所以暗电子仍然通过增加随机噪声而限制了灵敏度。
 
关于本站 | 广告服务 | 联系我们 | 招聘信息 | 网站导航 | 隐私保护
Copyright (C) 1998-2024. Creaders.NET. All Rights Reserved.